/** @file numeric.cpp * * This file contains the interface to the underlying bignum package. * Its most important design principle is to completely hide the inner * working of that other package from the user of GiNaC. It must either * provide implementation of arithmetic operators and numerical evaluation * of special functions or implement the interface to the bignum package. */ /* * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include #include #if defined(HAVE_SSTREAM) #include #elif defined(HAVE_STRSTREAM) #include #else #error Need either sstream or strstream #endif #include "numeric.h" #include "ex.h" #include "archive.h" #include "debugmsg.h" #include "utils.h" // CLN should not pollute the global namespace, hence we include it here // instead of in some header file where it would propagate to other parts. // Also, we only need a subset of CLN, so we don't include the complete cln.h: #ifdef HAVE_CLN_CLN_H #include #include #include #include #include #include #include #include #include #include #include #include #else // def HAVE_CLN_CLN_H #include #include #include #include #include #include #include #include #include #include #include #include #endif // def HAVE_CLN_CLN_H #ifndef NO_NAMESPACE_GINAC namespace GiNaC { #endif // ndef NO_NAMESPACE_GINAC // linker has no problems finding text symbols for numerator or denominator //#define SANE_LINKER GINAC_IMPLEMENT_REGISTERED_CLASS(numeric, basic) ////////// // default constructor, destructor, copy constructor assignment // operator and helpers ////////// // public /** default ctor. Numerically it initializes to an integer zero. */ numeric::numeric() : basic(TINFO_numeric) { debugmsg("numeric default constructor", LOGLEVEL_CONSTRUCT); value = new ::cl_N; *value = ::cl_I(0); calchash(); setflag(status_flags::evaluated | status_flags::expanded | status_flags::hash_calculated); } numeric::~numeric() { debugmsg("numeric destructor" ,LOGLEVEL_DESTRUCT); destroy(0); } numeric::numeric(const numeric & other) { debugmsg("numeric copy constructor", LOGLEVEL_CONSTRUCT); copy(other); } const numeric & numeric::operator=(const numeric & other) { debugmsg("numeric operator=", LOGLEVEL_ASSIGNMENT); if (this != &other) { destroy(1); copy(other); } return *this; } // protected void numeric::copy(const numeric & other) { basic::copy(other); value = new ::cl_N(*other.value); } void numeric::destroy(bool call_parent) { delete value; if (call_parent) basic::destroy(call_parent); } ////////// // other constructors ////////// // public numeric::numeric(int i) : basic(TINFO_numeric) { debugmsg("numeric constructor from int",LOGLEVEL_CONSTRUCT); // Not the whole int-range is available if we don't cast to long // first. This is due to the behaviour of the cl_I-ctor, which // emphasizes efficiency: value = new ::cl_I((long) i); calchash(); setflag(status_flags::evaluated| status_flags::hash_calculated); } numeric::numeric(unsigned int i) : basic(TINFO_numeric) { debugmsg("numeric constructor from uint",LOGLEVEL_CONSTRUCT); // Not the whole uint-range is available if we don't cast to ulong // first. This is due to the behaviour of the cl_I-ctor, which // emphasizes efficiency: value = new ::cl_I((unsigned long)i); calchash(); setflag(status_flags::evaluated| status_flags::hash_calculated); } numeric::numeric(long i) : basic(TINFO_numeric) { debugmsg("numeric constructor from long",LOGLEVEL_CONSTRUCT); value = new ::cl_I(i); calchash(); setflag(status_flags::evaluated| status_flags::hash_calculated); } numeric::numeric(unsigned long i) : basic(TINFO_numeric) { debugmsg("numeric constructor from ulong",LOGLEVEL_CONSTRUCT); value = new ::cl_I(i); calchash(); setflag(status_flags::evaluated| status_flags::hash_calculated); } /** Ctor for rational numerics a/b. * * @exception overflow_error (division by zero) */ numeric::numeric(long numer, long denom) : basic(TINFO_numeric) { debugmsg("numeric constructor from long/long",LOGLEVEL_CONSTRUCT); if (!denom) throw (std::overflow_error("division by zero")); value = new ::cl_I(numer); *value = *value / ::cl_I(denom); calchash(); setflag(status_flags::evaluated| status_flags::hash_calculated); } numeric::numeric(double d) : basic(TINFO_numeric) { debugmsg("numeric constructor from double",LOGLEVEL_CONSTRUCT); // We really want to explicitly use the type cl_LF instead of the // more general cl_F, since that would give us a cl_DF only which // will not be promoted to cl_LF if overflow occurs: value = new cl_N; *value = cl_float(d, cl_default_float_format); calchash(); setflag(status_flags::evaluated| status_flags::hash_calculated); } /** ctor from C-style string. It also accepts complex numbers in GiNaC * notation like "2+5*I". */ numeric::numeric(const char *s) : basic(TINFO_numeric) { debugmsg("numeric constructor from string",LOGLEVEL_CONSTRUCT); value = new ::cl_N(0); // parse complex numbers (functional but not completely safe, unfortunately // std::string does not understand regexpese): // ss should represent a simple sum like 2+5*I std::string ss(s); // make it safe by adding explicit sign if (ss.at(0) != '+' && ss.at(0) != '-') ss = '+' + ss; std::string::size_type delim; do { // chop ss into terms from left to right std::string term; bool imaginary = false; delim = ss.find_first_of(std::string("+-"),1); // Do we have an exponent marker like "31.415E-1"? If so, hop on! if (delim != std::string::npos && ss.at(delim-1) == 'E') delim = ss.find_first_of(std::string("+-"),delim+1); term = ss.substr(0,delim); if (delim != std::string::npos) ss = ss.substr(delim); // is the term imaginary? if (term.find("I") != std::string::npos) { // erase 'I': term = term.replace(term.find("I"),1,""); // erase '*': if (term.find("*") != std::string::npos) term = term.replace(term.find("*"),1,""); // correct for trivial +/-I without explicit factor on I: if (term.size() == 1) term += "1"; imaginary = true; } const char *cs = term.c_str(); // CLN's short types are not useful within the GiNaC framework, hence // we go straight to the construction of a long float. Simply using // cl_N(s) would require us to use add a CLN exponent mark, otherwise // we would not be save from over-/underflows. if (strchr(cs, '.')) if (imaginary) *value = *value + ::complex(cl_I(0),::cl_LF(cs)); else *value = *value + ::cl_LF(cs); else if (imaginary) *value = *value + ::complex(cl_I(0),::cl_R(cs)); else *value = *value + ::cl_R(cs); } while(delim != std::string::npos); calchash(); setflag(status_flags::evaluated| status_flags::hash_calculated); } /** Ctor from CLN types. This is for the initiated user or internal use * only. */ numeric::numeric(const cl_N & z) : basic(TINFO_numeric) { debugmsg("numeric constructor from cl_N", LOGLEVEL_CONSTRUCT); value = new ::cl_N(z); calchash(); setflag(status_flags::evaluated| status_flags::hash_calculated); } ////////// // archiving ////////// /** Construct object from archive_node. */ numeric::numeric(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("numeric constructor from archive_node", LOGLEVEL_CONSTRUCT); value = new ::cl_N; // Read number as string std::string str; if (n.find_string("number", str)) { #ifdef HAVE_SSTREAM std::istringstream s(str); #else std::istrstream s(str.c_str(), str.size() + 1); #endif ::cl_idecoded_float re, im; char c; s.get(c); switch (c) { case 'R': // Integer-decoded real number s >> re.sign >> re.mantissa >> re.exponent; *value = re.sign * re.mantissa * ::expt(cl_float(2.0, cl_default_float_format), re.exponent); break; case 'C': // Integer-decoded complex number s >> re.sign >> re.mantissa >> re.exponent; s >> im.sign >> im.mantissa >> im.exponent; *value = ::complex(re.sign * re.mantissa * ::expt(cl_float(2.0, cl_default_float_format), re.exponent), im.sign * im.mantissa * ::expt(cl_float(2.0, cl_default_float_format), im.exponent)); break; default: // Ordinary number s.putback(c); s >> *value; break; } } calchash(); setflag(status_flags::evaluated| status_flags::hash_calculated); } /** Unarchive the object. */ ex numeric::unarchive(const archive_node &n, const lst &sym_lst) { return (new numeric(n, sym_lst))->setflag(status_flags::dynallocated); } /** Archive the object. */ void numeric::archive(archive_node &n) const { inherited::archive(n); // Write number as string #ifdef HAVE_SSTREAM std::ostringstream s; #else char buf[1024]; std::ostrstream s(buf, 1024); #endif if (this->is_crational()) s << *value; else { // Non-rational numbers are written in an integer-decoded format // to preserve the precision if (this->is_real()) { cl_idecoded_float re = integer_decode_float(The(::cl_F)(*value)); s << "R"; s << re.sign << " " << re.mantissa << " " << re.exponent; } else { cl_idecoded_float re = integer_decode_float(The(::cl_F)(::realpart(*value))); cl_idecoded_float im = integer_decode_float(The(::cl_F)(::imagpart(*value))); s << "C"; s << re.sign << " " << re.mantissa << " " << re.exponent << " "; s << im.sign << " " << im.mantissa << " " << im.exponent; } } #ifdef HAVE_SSTREAM n.add_string("number", s.str()); #else s << ends; std::string str(buf); n.add_string("number", str); #endif } ////////// // functions overriding virtual functions from bases classes ////////// // public basic * numeric::duplicate() const { debugmsg("numeric duplicate", LOGLEVEL_DUPLICATE); return new numeric(*this); } /** Helper function to print a real number in a nicer way than is CLN's * default. Instead of printing 42.0L0 this just prints 42.0 to ostream os * and instead of 3.99168L7 it prints 3.99168E7. This is fine in GiNaC as * long as it only uses cl_LF and no other floating point types. * * @see numeric::print() */ static void print_real_number(ostream & os, const cl_R & num) { cl_print_flags ourflags; if (::instanceof(num, ::cl_RA_ring)) { // case 1: integer or rational, nothing special to do: ::print_real(os, ourflags, num); } else { // case 2: float // make CLN believe this number has default_float_format, so it prints // 'E' as exponent marker instead of 'L': ourflags.default_float_format = ::cl_float_format(The(::cl_F)(num)); ::print_real(os, ourflags, num); } return; } /** This method adds to the output so it blends more consistently together * with the other routines and produces something compatible to ginsh input. * * @see print_real_number() */ void numeric::print(ostream & os, unsigned upper_precedence) const { debugmsg("numeric print", LOGLEVEL_PRINT); if (this->is_real()) { // case 1, real: x or -x if ((precedence<=upper_precedence) && (!this->is_nonneg_integer())) { os << "("; print_real_number(os, The(::cl_R)(*value)); os << ")"; } else { print_real_number(os, The(::cl_R)(*value)); } } else { // case 2, imaginary: y*I or -y*I if (::realpart(*value) == 0) { if ((precedence<=upper_precedence) && (::imagpart(*value) < 0)) { if (::imagpart(*value) == -1) { os << "(-I)"; } else { os << "("; print_real_number(os, The(::cl_R)(::imagpart(*value))); os << "*I)"; } } else { if (::imagpart(*value) == 1) { os << "I"; } else { if (::imagpart (*value) == -1) { os << "-I"; } else { print_real_number(os, The(::cl_R)(::imagpart(*value))); os << "*I"; } } } } else { // case 3, complex: x+y*I or x-y*I or -x+y*I or -x-y*I if (precedence <= upper_precedence) os << "("; print_real_number(os, The(::cl_R)(::realpart(*value))); if (::imagpart(*value) < 0) { if (::imagpart(*value) == -1) { os << "-I"; } else { print_real_number(os, The(::cl_R)(::imagpart(*value))); os << "*I"; } } else { if (::imagpart(*value) == 1) { os << "+I"; } else { os << "+"; print_real_number(os, The(::cl_R)(::imagpart(*value))); os << "*I"; } } if (precedence <= upper_precedence) os << ")"; } } } void numeric::printraw(ostream & os) const { // The method printraw doesn't do much, it simply uses CLN's operator<<() // for output, which is ugly but reliable. e.g: 2+2i debugmsg("numeric printraw", LOGLEVEL_PRINT); os << "numeric(" << *value << ")"; } void numeric::printtree(ostream & os, unsigned indent) const { debugmsg("numeric printtree", LOGLEVEL_PRINT); os << std::string(indent,' ') << *value << " (numeric): " << "hash=" << hashvalue << " (0x" << hex << hashvalue << dec << ")" << ", flags=" << flags << endl; } void numeric::printcsrc(ostream & os, unsigned type, unsigned upper_precedence) const { debugmsg("numeric print csrc", LOGLEVEL_PRINT); ios::fmtflags oldflags = os.flags(); os.setf(ios::scientific); if (this->is_rational() && !this->is_integer()) { if (compare(_num0()) > 0) { os << "("; if (type == csrc_types::ctype_cl_N) os << "cl_F(\"" << numer().evalf() << "\")"; else os << numer().to_double(); } else { os << "-("; if (type == csrc_types::ctype_cl_N) os << "cl_F(\"" << -numer().evalf() << "\")"; else os << -numer().to_double(); } os << "/"; if (type == csrc_types::ctype_cl_N) os << "cl_F(\"" << denom().evalf() << "\")"; else os << denom().to_double(); os << ")"; } else { if (type == csrc_types::ctype_cl_N) os << "cl_F(\"" << evalf() << "\")"; else os << to_double(); } os.flags(oldflags); } bool numeric::info(unsigned inf) const { switch (inf) { case info_flags::numeric: case info_flags::polynomial: case info_flags::rational_function: return true; case info_flags::real: return is_real(); case info_flags::rational: case info_flags::rational_polynomial: return is_rational(); case info_flags::crational: case info_flags::crational_polynomial: return is_crational(); case info_flags::integer: case info_flags::integer_polynomial: return is_integer(); case info_flags::cinteger: case info_flags::cinteger_polynomial: return is_cinteger(); case info_flags::positive: return is_positive(); case info_flags::negative: return is_negative(); case info_flags::nonnegative: return !is_negative(); case info_flags::posint: return is_pos_integer(); case info_flags::negint: return is_integer() && is_negative(); case info_flags::nonnegint: return is_nonneg_integer(); case info_flags::even: return is_even(); case info_flags::odd: return is_odd(); case info_flags::prime: return is_prime(); case info_flags::algebraic: return !is_real(); } return false; } /** Disassemble real part and imaginary part to scan for the occurrence of a * single number. Also handles the imaginary unit. It ignores the sign on * both this and the argument, which may lead to what might appear as funny * results: (2+I).has(-2) -> true. But this is consistent, since we also * would like to have (-2+I).has(2) -> true and we want to think about the * sign as a multiplicative factor. */ bool numeric::has(const ex & other) const { if (!is_exactly_of_type(*other.bp, numeric)) return false; const numeric & o = static_cast(const_cast(*other.bp)); if (this->is_equal(o) || this->is_equal(-o)) return true; if (o.imag().is_zero()) // e.g. scan for 3 in -3*I return (this->real().is_equal(o) || this->imag().is_equal(o) || this->real().is_equal(-o) || this->imag().is_equal(-o)); else { if (o.is_equal(I)) // e.g scan for I in 42*I return !this->is_real(); if (o.real().is_zero()) // e.g. scan for 2*I in 2*I+1 return (this->real().has(o*I) || this->imag().has(o*I) || this->real().has(-o*I) || this->imag().has(-o*I)); } return false; } /** Evaluation of numbers doesn't do anything at all. */ ex numeric::eval(int level) const { // Warning: if this is ever gonna do something, the ex ctors from all kinds // of numbers should be checking for status_flags::evaluated. return this->hold(); } /** Cast numeric into a floating-point object. For example exact numeric(1) is * returned as a 1.0000000000000000000000 and so on according to how Digits is * currently set. * * @param level ignored, but needed for overriding basic::evalf. * @return an ex-handle to a numeric. */ ex numeric::evalf(int level) const { // level can safely be discarded for numeric objects. return numeric(::cl_float(1.0, ::cl_default_float_format) * (*value)); // -> CLN } // protected /** Implementation of ex::diff() for a numeric. It always returns 0. * * @see ex::diff */ ex numeric::derivative(const symbol & s) const { return _ex0(); } int numeric::compare_same_type(const basic & other) const { GINAC_ASSERT(is_exactly_of_type(other, numeric)); const numeric & o = static_cast(const_cast(other)); if (*value == *o.value) { return 0; } return compare(o); } bool numeric::is_equal_same_type(const basic & other) const { GINAC_ASSERT(is_exactly_of_type(other,numeric)); const numeric *o = static_cast(&other); return this->is_equal(*o); } unsigned numeric::calchash(void) const { // Use CLN's hashcode. Warning: It depends only on the number's value, not // its type or precision (i.e. a true equivalence relation on numbers). As // a consequence, 3 and 3.0 share the same hashvalue. return (hashvalue = cl_equal_hashcode(*value) | 0x80000000U); } ////////// // new virtual functions which can be overridden by derived classes ////////// // none ////////// // non-virtual functions in this class ////////// // public /** Numerical addition method. Adds argument to *this and returns result as * a new numeric object. */ numeric numeric::add(const numeric & other) const { return numeric((*value)+(*other.value)); } /** Numerical subtraction method. Subtracts argument from *this and returns * result as a new numeric object. */ numeric numeric::sub(const numeric & other) const { return numeric((*value)-(*other.value)); } /** Numerical multiplication method. Multiplies *this and argument and returns * result as a new numeric object. */ numeric numeric::mul(const numeric & other) const { static const numeric * _num1p=&_num1(); if (this==_num1p) { return other; } else if (&other==_num1p) { return *this; } return numeric((*value)*(*other.value)); } /** Numerical division method. Divides *this by argument and returns result as * a new numeric object. * * @exception overflow_error (division by zero) */ numeric numeric::div(const numeric & other) const { if (::zerop(*other.value)) throw (std::overflow_error("division by zero")); return numeric((*value)/(*other.value)); } numeric numeric::power(const numeric & other) const { static const numeric * _num1p = &_num1(); if (&other==_num1p) return *this; if (::zerop(*value)) { if (::zerop(*other.value)) throw (std::domain_error("numeric::eval(): pow(0,0) is undefined")); else if (::zerop(::realpart(*other.value))) throw (std::domain_error("numeric::eval(): pow(0,I) is undefined")); else if (::minusp(::realpart(*other.value))) throw (std::overflow_error("numeric::eval(): division by zero")); else return _num0(); } return numeric(::expt(*value,*other.value)); } /** Inverse of a number. */ numeric numeric::inverse(void) const { return numeric(::recip(*value)); // -> CLN } const numeric & numeric::add_dyn(const numeric & other) const { return static_cast((new numeric((*value)+(*other.value)))-> setflag(status_flags::dynallocated)); } const numeric & numeric::sub_dyn(const numeric & other) const { return static_cast((new numeric((*value)-(*other.value)))-> setflag(status_flags::dynallocated)); } const numeric & numeric::mul_dyn(const numeric & other) const { static const numeric * _num1p=&_num1(); if (this==_num1p) { return other; } else if (&other==_num1p) { return *this; } return static_cast((new numeric((*value)*(*other.value)))-> setflag(status_flags::dynallocated)); } const numeric & numeric::div_dyn(const numeric & other) const { if (::zerop(*other.value)) throw (std::overflow_error("division by zero")); return static_cast((new numeric((*value)/(*other.value)))-> setflag(status_flags::dynallocated)); } const numeric & numeric::power_dyn(const numeric & other) const { static const numeric * _num1p=&_num1(); if (&other==_num1p) return *this; if (::zerop(*value)) { if (::zerop(*other.value)) throw (std::domain_error("numeric::eval(): pow(0,0) is undefined")); else if (::zerop(::realpart(*other.value))) throw (std::domain_error("numeric::eval(): pow(0,I) is undefined")); else if (::minusp(::realpart(*other.value))) throw (std::overflow_error("numeric::eval(): division by zero")); else return _num0(); } return static_cast((new numeric(::expt(*value,*other.value)))-> setflag(status_flags::dynallocated)); } const numeric & numeric::operator=(int i) { return operator=(numeric(i)); } const numeric & numeric::operator=(unsigned int i) { return operator=(numeric(i)); } const numeric & numeric::operator=(long i) { return operator=(numeric(i)); } const numeric & numeric::operator=(unsigned long i) { return operator=(numeric(i)); } const numeric & numeric::operator=(double d) { return operator=(numeric(d)); } const numeric & numeric::operator=(const char * s) { return operator=(numeric(s)); } /** Return the complex half-plane (left or right) in which the number lies. * csgn(x)==0 for x==0, csgn(x)==1 for Re(x)>0 or Re(x)=0 and Im(x)>0, * csgn(x)==-1 for Re(x)<0 or Re(x)=0 and Im(x)<0. * * @see numeric::compare(const numeric & other) */ int numeric::csgn(void) const { if (this->is_zero()) return 0; if (!::zerop(::realpart(*value))) { if (::plusp(::realpart(*value))) return 1; else return -1; } else { if (::plusp(::imagpart(*value))) return 1; else return -1; } } /** This method establishes a canonical order on all numbers. For complex * numbers this is not possible in a mathematically consistent way but we need * to establish some order and it ought to be fast. So we simply define it * to be compatible with our method csgn. * * @return csgn(*this-other) * @see numeric::csgn(void) */ int numeric::compare(const numeric & other) const { // Comparing two real numbers? if (this->is_real() && other.is_real()) // Yes, just compare them return ::cl_compare(The(::cl_R)(*value), The(::cl_R)(*other.value)); else { // No, first compare real parts cl_signean real_cmp = ::cl_compare(::realpart(*value), ::realpart(*other.value)); if (real_cmp) return real_cmp; return ::cl_compare(::imagpart(*value), ::imagpart(*other.value)); } } bool numeric::is_equal(const numeric & other) const { return (*value == *other.value); } /** True if object is zero. */ bool numeric::is_zero(void) const { return ::zerop(*value); // -> CLN } /** True if object is not complex and greater than zero. */ bool numeric::is_positive(void) const { if (this->is_real()) return ::plusp(The(::cl_R)(*value)); // -> CLN return false; } /** True if object is not complex and less than zero. */ bool numeric::is_negative(void) const { if (this->is_real()) return ::minusp(The(::cl_R)(*value)); // -> CLN return false; } /** True if object is a non-complex integer. */ bool numeric::is_integer(void) const { return ::instanceof(*value, ::cl_I_ring); // -> CLN } /** True if object is an exact integer greater than zero. */ bool numeric::is_pos_integer(void) const { return (this->is_integer() && ::plusp(The(::cl_I)(*value))); // -> CLN } /** True if object is an exact integer greater or equal zero. */ bool numeric::is_nonneg_integer(void) const { return (this->is_integer() && !::minusp(The(::cl_I)(*value))); // -> CLN } /** True if object is an exact even integer. */ bool numeric::is_even(void) const { return (this->is_integer() && ::evenp(The(::cl_I)(*value))); // -> CLN } /** True if object is an exact odd integer. */ bool numeric::is_odd(void) const { return (this->is_integer() && ::oddp(The(::cl_I)(*value))); // -> CLN } /** Probabilistic primality test. * * @return true if object is exact integer and prime. */ bool numeric::is_prime(void) const { return (this->is_integer() && ::isprobprime(The(::cl_I)(*value))); // -> CLN } /** True if object is an exact rational number, may even be complex * (denominator may be unity). */ bool numeric::is_rational(void) const { return ::instanceof(*value, ::cl_RA_ring); // -> CLN } /** True if object is a real integer, rational or float (but not complex). */ bool numeric::is_real(void) const { return ::instanceof(*value, ::cl_R_ring); // -> CLN } bool numeric::operator==(const numeric & other) const { return (*value == *other.value); // -> CLN } bool numeric::operator!=(const numeric & other) const { return (*value != *other.value); // -> CLN } /** True if object is element of the domain of integers extended by I, i.e. is * of the form a+b*I, where a and b are integers. */ bool numeric::is_cinteger(void) const { if (::instanceof(*value, ::cl_I_ring)) return true; else if (!this->is_real()) { // complex case, handle n+m*I if (::instanceof(::realpart(*value), ::cl_I_ring) && ::instanceof(::imagpart(*value), ::cl_I_ring)) return true; } return false; } /** True if object is an exact rational number, may even be complex * (denominator may be unity). */ bool numeric::is_crational(void) const { if (::instanceof(*value, ::cl_RA_ring)) return true; else if (!this->is_real()) { // complex case, handle Q(i): if (::instanceof(::realpart(*value), ::cl_RA_ring) && ::instanceof(::imagpart(*value), ::cl_RA_ring)) return true; } return false; } /** Numerical comparison: less. * * @exception invalid_argument (complex inequality) */ bool numeric::operator<(const numeric & other) const { if (this->is_real() && other.is_real()) return (The(::cl_R)(*value) < The(::cl_R)(*other.value)); // -> CLN throw (std::invalid_argument("numeric::operator<(): complex inequality")); return false; // make compiler shut up } /** Numerical comparison: less or equal. * * @exception invalid_argument (complex inequality) */ bool numeric::operator<=(const numeric & other) const { if (this->is_real() && other.is_real()) return (The(::cl_R)(*value) <= The(::cl_R)(*other.value)); // -> CLN throw (std::invalid_argument("numeric::operator<=(): complex inequality")); return false; // make compiler shut up } /** Numerical comparison: greater. * * @exception invalid_argument (complex inequality) */ bool numeric::operator>(const numeric & other) const { if (this->is_real() && other.is_real()) return (The(::cl_R)(*value) > The(::cl_R)(*other.value)); // -> CLN throw (std::invalid_argument("numeric::operator>(): complex inequality")); return false; // make compiler shut up } /** Numerical comparison: greater or equal. * * @exception invalid_argument (complex inequality) */ bool numeric::operator>=(const numeric & other) const { if (this->is_real() && other.is_real()) return (The(::cl_R)(*value) >= The(::cl_R)(*other.value)); // -> CLN throw (std::invalid_argument("numeric::operator>=(): complex inequality")); return false; // make compiler shut up } /** Converts numeric types to machine's int. You should check with * is_integer() if the number is really an integer before calling this method. * You may also consider checking the range first. */ int numeric::to_int(void) const { GINAC_ASSERT(this->is_integer()); return ::cl_I_to_int(The(::cl_I)(*value)); // -> CLN } /** Converts numeric types to machine's long. You should check with * is_integer() if the number is really an integer before calling this method. * You may also consider checking the range first. */ long numeric::to_long(void) const { GINAC_ASSERT(this->is_integer()); return ::cl_I_to_long(The(::cl_I)(*value)); // -> CLN } /** Converts numeric types to machine's double. You should check with is_real() * if the number is really not complex before calling this method. */ double numeric::to_double(void) const { GINAC_ASSERT(this->is_real()); return ::cl_double_approx(::realpart(*value)); // -> CLN } /** Real part of a number. */ const numeric numeric::real(void) const { return numeric(::realpart(*value)); // -> CLN } /** Imaginary part of a number. */ const numeric numeric::imag(void) const { return numeric(::imagpart(*value)); // -> CLN } #ifndef SANE_LINKER // Unfortunately, CLN did not provide an official way to access the numerator // or denominator of a rational number (cl_RA). Doing some excavations in CLN // one finds how it works internally in src/rational/cl_RA.h: struct cl_heap_ratio : cl_heap { cl_I numerator; cl_I denominator; }; inline cl_heap_ratio* TheRatio (const cl_N& obj) { return (cl_heap_ratio*)(obj.pointer); } #endif // ndef SANE_LINKER /** Numerator. Computes the numerator of rational numbers, rationalized * numerator of complex if real and imaginary part are both rational numbers * (i.e numer(4/3+5/6*I) == 8+5*I), the number carrying the sign in all other * cases. */ const numeric numeric::numer(void) const { if (this->is_integer()) { return numeric(*this); } #ifdef SANE_LINKER else if (::instanceof(*value, ::cl_RA_ring)) { return numeric(::numerator(The(::cl_RA)(*value))); } else if (!this->is_real()) { // complex case, handle Q(i): cl_R r = ::realpart(*value); cl_R i = ::imagpart(*value); if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_I_ring)) return numeric(*this); if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_RA_ring)) return numeric(::complex(r*::denominator(The(::cl_RA)(i)), ::numerator(The(::cl_RA)(i)))); if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_I_ring)) return numeric(::complex(::numerator(The(::cl_RA)(r)), i*::denominator(The(::cl_RA)(r)))); if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_RA_ring)) { cl_I s = ::lcm(::denominator(The(::cl_RA)(r)), ::denominator(The(::cl_RA)(i))); return numeric(::complex(::numerator(The(::cl_RA)(r))*(exquo(s,::denominator(The(::cl_RA)(r)))), ::numerator(The(::cl_RA)(i))*(exquo(s,::denominator(The(::cl_RA)(i)))))); } } #else else if (instanceof(*value, ::cl_RA_ring)) { return numeric(TheRatio(*value)->numerator); } else if (!this->is_real()) { // complex case, handle Q(i): cl_R r = ::realpart(*value); cl_R i = ::imagpart(*value); if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_I_ring)) return numeric(*this); if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_RA_ring)) return numeric(::complex(r*TheRatio(i)->denominator, TheRatio(i)->numerator)); if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_I_ring)) return numeric(::complex(TheRatio(r)->numerator, i*TheRatio(r)->denominator)); if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_RA_ring)) { cl_I s = ::lcm(TheRatio(r)->denominator, TheRatio(i)->denominator); return numeric(::complex(TheRatio(r)->numerator*(exquo(s,TheRatio(r)->denominator)), TheRatio(i)->numerator*(exquo(s,TheRatio(i)->denominator)))); } } #endif // def SANE_LINKER // at least one float encountered return numeric(*this); } /** Denominator. Computes the denominator of rational numbers, common integer * denominator of complex if real and imaginary part are both rational numbers * (i.e denom(4/3+5/6*I) == 6), one in all other cases. */ const numeric numeric::denom(void) const { if (this->is_integer()) { return _num1(); } #ifdef SANE_LINKER if (instanceof(*value, ::cl_RA_ring)) { return numeric(::denominator(The(::cl_RA)(*value))); } if (!this->is_real()) { // complex case, handle Q(i): cl_R r = ::realpart(*value); cl_R i = ::imagpart(*value); if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_I_ring)) return _num1(); if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_RA_ring)) return numeric(::denominator(The(::cl_RA)(i))); if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_I_ring)) return numeric(::denominator(The(::cl_RA)(r))); if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_RA_ring)) return numeric(::lcm(::denominator(The(::cl_RA)(r)), ::denominator(The(::cl_RA)(i)))); } #else if (instanceof(*value, ::cl_RA_ring)) { return numeric(TheRatio(*value)->denominator); } if (!this->is_real()) { // complex case, handle Q(i): cl_R r = ::realpart(*value); cl_R i = ::imagpart(*value); if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_I_ring)) return _num1(); if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_RA_ring)) return numeric(TheRatio(i)->denominator); if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_I_ring)) return numeric(TheRatio(r)->denominator); if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_RA_ring)) return numeric(::lcm(TheRatio(r)->denominator, TheRatio(i)->denominator)); } #endif // def SANE_LINKER // at least one float encountered return _num1(); } /** Size in binary notation. For integers, this is the smallest n >= 0 such * that -2^n <= x < 2^n. If x > 0, this is the unique n > 0 such that * 2^(n-1) <= x < 2^n. * * @return number of bits (excluding sign) needed to represent that number * in two's complement if it is an integer, 0 otherwise. */ int numeric::int_length(void) const { if (this->is_integer()) return ::integer_length(The(::cl_I)(*value)); // -> CLN else return 0; } ////////// // static member variables ////////// // protected unsigned numeric::precedence = 30; ////////// // global constants ////////// const numeric some_numeric; const type_info & typeid_numeric=typeid(some_numeric); /** Imaginary unit. This is not a constant but a numeric since we are * natively handing complex numbers anyways. */ const numeric I = numeric(::complex(cl_I(0),cl_I(1))); /** Exponential function. * * @return arbitrary precision numerical exp(x). */ const numeric exp(const numeric & x) { return ::exp(*x.value); // -> CLN } /** Natural logarithm. * * @param z complex number * @return arbitrary precision numerical log(x). * @exception overflow_error (logarithmic singularity) */ const numeric log(const numeric & z) { if (z.is_zero()) throw (std::overflow_error("log(): logarithmic singularity")); return ::log(*z.value); // -> CLN } /** Numeric sine (trigonometric function). * * @return arbitrary precision numerical sin(x). */ const numeric sin(const numeric & x) { return ::sin(*x.value); // -> CLN } /** Numeric cosine (trigonometric function). * * @return arbitrary precision numerical cos(x). */ const numeric cos(const numeric & x) { return ::cos(*x.value); // -> CLN } /** Numeric tangent (trigonometric function). * * @return arbitrary precision numerical tan(x). */ const numeric tan(const numeric & x) { return ::tan(*x.value); // -> CLN } /** Numeric inverse sine (trigonometric function). * * @return arbitrary precision numerical asin(x). */ const numeric asin(const numeric & x) { return ::asin(*x.value); // -> CLN } /** Numeric inverse cosine (trigonometric function). * * @return arbitrary precision numerical acos(x). */ const numeric acos(const numeric & x) { return ::acos(*x.value); // -> CLN } /** Arcustangent. * * @param z complex number * @return atan(z) * @exception overflow_error (logarithmic singularity) */ const numeric atan(const numeric & x) { if (!x.is_real() && x.real().is_zero() && !abs(x.imag()).is_equal(_num1())) throw (std::overflow_error("atan(): logarithmic singularity")); return ::atan(*x.value); // -> CLN } /** Arcustangent. * * @param x real number * @param y real number * @return atan(y/x) */ const numeric atan(const numeric & y, const numeric & x) { if (x.is_real() && y.is_real()) return ::atan(::realpart(*x.value), ::realpart(*y.value)); // -> CLN else throw (std::invalid_argument("numeric::atan(): complex argument")); } /** Numeric hyperbolic sine (trigonometric function). * * @return arbitrary precision numerical sinh(x). */ const numeric sinh(const numeric & x) { return ::sinh(*x.value); // -> CLN } /** Numeric hyperbolic cosine (trigonometric function). * * @return arbitrary precision numerical cosh(x). */ const numeric cosh(const numeric & x) { return ::cosh(*x.value); // -> CLN } /** Numeric hyperbolic tangent (trigonometric function). * * @return arbitrary precision numerical tanh(x). */ const numeric tanh(const numeric & x) { return ::tanh(*x.value); // -> CLN } /** Numeric inverse hyperbolic sine (trigonometric function). * * @return arbitrary precision numerical asinh(x). */ const numeric asinh(const numeric & x) { return ::asinh(*x.value); // -> CLN } /** Numeric inverse hyperbolic cosine (trigonometric function). * * @return arbitrary precision numerical acosh(x). */ const numeric acosh(const numeric & x) { return ::acosh(*x.value); // -> CLN } /** Numeric inverse hyperbolic tangent (trigonometric function). * * @return arbitrary precision numerical atanh(x). */ const numeric atanh(const numeric & x) { return ::atanh(*x.value); // -> CLN } /** Numeric evaluation of Riemann's Zeta function. Currently works only for * integer arguments. */ const numeric zeta(const numeric & x) { // A dirty hack to allow for things like zeta(3.0), since CLN currently // only knows about integer arguments and zeta(3).evalf() automatically // cascades down to zeta(3.0).evalf(). The trick is to rely on 3.0-3 // being an exact zero for CLN, which can be tested and then we can just // pass the number casted to an int: if (x.is_real()) { int aux = (int)(::cl_double_approx(::realpart(*x.value))); if (zerop(*x.value-aux)) return ::cl_zeta(aux); // -> CLN } clog << "zeta(" << x << "): Does anybody know good way to calculate this numerically?" << endl; return numeric(0); } /** The Gamma function. * This is only a stub! */ const numeric lgamma(const numeric & x) { clog << "lgamma(" << x << "): Does anybody know good way to calculate this numerically?" << endl; return numeric(0); } const numeric tgamma(const numeric & x) { clog << "tgamma(" << x << "): Does anybody know good way to calculate this numerically?" << endl; return numeric(0); } /** The psi function (aka polygamma function). * This is only a stub! */ const numeric psi(const numeric & x) { clog << "psi(" << x << "): Does anybody know good way to calculate this numerically?" << endl; return numeric(0); } /** The psi functions (aka polygamma functions). * This is only a stub! */ const numeric psi(const numeric & n, const numeric & x) { clog << "psi(" << n << "," << x << "): Does anybody know good way to calculate this numerically?" << endl; return numeric(0); } /** Factorial combinatorial function. * * @param n integer argument >= 0 * @exception range_error (argument must be integer >= 0) */ const numeric factorial(const numeric & n) { if (!n.is_nonneg_integer()) throw (std::range_error("numeric::factorial(): argument must be integer >= 0")); return numeric(::factorial(n.to_int())); // -> CLN } /** The double factorial combinatorial function. (Scarcely used, but still * useful in cases, like for exact results of tgamma(n+1/2) for instance.) * * @param n integer argument >= -1 * @return n!! == n * (n-2) * (n-4) * ... * ({1|2}) with 0!! == (-1)!! == 1 * @exception range_error (argument must be integer >= -1) */ const numeric doublefactorial(const numeric & n) { if (n == numeric(-1)) { return _num1(); } if (!n.is_nonneg_integer()) { throw (std::range_error("numeric::doublefactorial(): argument must be integer >= -1")); } return numeric(::doublefactorial(n.to_int())); // -> CLN } /** The Binomial coefficients. It computes the binomial coefficients. For * integer n and k and positive n this is the number of ways of choosing k * objects from n distinct objects. If n is negative, the formula * binomial(n,k) == (-1)^k*binomial(k-n-1,k) is used to compute the result. */ const numeric binomial(const numeric & n, const numeric & k) { if (n.is_integer() && k.is_integer()) { if (n.is_nonneg_integer()) { if (k.compare(n)!=1 && k.compare(_num0())!=-1) return numeric(::binomial(n.to_int(),k.to_int())); // -> CLN else return _num0(); } else { return _num_1().power(k)*binomial(k-n-_num1(),k); } } // should really be gamma(n+1)/gamma(r+1)/gamma(n-r+1) or a suitable limit throw (std::range_error("numeric::binomial(): donīt know how to evaluate that.")); } /** Bernoulli number. The nth Bernoulli number is the coefficient of x^n/n! * in the expansion of the function x/(e^x-1). * * @return the nth Bernoulli number (a rational number). * @exception range_error (argument must be integer >= 0) */ const numeric bernoulli(const numeric & nn) { if (!nn.is_integer() || nn.is_negative()) throw (std::range_error("numeric::bernoulli(): argument must be integer >= 0")); // Method: // // The Bernoulli numbers are rational numbers that may be computed using // the relation // // B_n = - 1/(n+1) * sum_{k=0}^{n-1}(binomial(n+1,k)*B_k) // // with B(0) = 1. Since the n'th Bernoulli number depends on all the // previous ones, the computation is necessarily very expensive. There are // several other ways of computing them, a particularly good one being // cl_I s = 1; // cl_I c = n+1; // cl_RA Bern = 0; // for (unsigned i=0; i results; static int highest_result = 0; // algorithm not applicable to B(0), so just store it if (results.size()==0) results.push_back(::cl_RA(1)); int n = nn.to_long(); for (int i=highest_result; i0; --j) { B = cl_I(n*m) * (B+results[j]) / (d1*d2); n += 4; m += 2; d1 -= 1; d2 -= 2; } B = (1 - ((B+1)/(2*i+3))) / (cl_I(1)<<(2*i+2)); results.push_back(B); ++highest_result; } return results[n/2]; } /** Fibonacci number. The nth Fibonacci number F(n) is defined by the * recurrence formula F(n)==F(n-1)+F(n-2) with F(0)==0 and F(1)==1. * * @param n an integer * @return the nth Fibonacci number F(n) (an integer number) * @exception range_error (argument must be an integer) */ const numeric fibonacci(const numeric & n) { if (!n.is_integer()) throw (std::range_error("numeric::fibonacci(): argument must be integer")); // Method: // // This is based on an implementation that can be found in CLN's example // directory. There, it is done recursively, which may be more elegant // than our non-recursive implementation that has to resort to some bit- // fiddling. This is, however, a matter of taste. // The following addition formula holds: // // F(n+m) = F(m-1)*F(n) + F(m)*F(n+1) for m >= 1, n >= 0. // // (Proof: For fixed m, the LHS and the RHS satisfy the same recurrence // w.r.t. n, and the initial values (n=0, n=1) agree. Hence all values // agree.) // Replace m by m+1: // F(n+m+1) = F(m)*F(n) + F(m+1)*F(n+1) for m >= 0, n >= 0 // Now put in m = n, to get // F(2n) = (F(n+1)-F(n))*F(n) + F(n)*F(n+1) = F(n)*(2*F(n+1) - F(n)) // F(2n+1) = F(n)^2 + F(n+1)^2 // hence // F(2n+2) = F(n+1)*(2*F(n) + F(n+1)) if (n.is_zero()) return _num0(); if (n.is_negative()) if (n.is_even()) return -fibonacci(-n); else return fibonacci(-n); ::cl_I u(0); ::cl_I v(1); ::cl_I m = The(::cl_I)(*n.value) >> 1L; // floor(n/2); for (uintL bit=::integer_length(m); bit>0; --bit) { // Since a squaring is cheaper than a multiplication, better use // three squarings instead of one multiplication and two squarings. ::cl_I u2 = ::square(u); ::cl_I v2 = ::square(v); if (::logbitp(bit-1, m)) { v = ::square(u + v) - u2; u = u2 + v2; } else { u = v2 - ::square(v - u); v = u2 + v2; } } if (n.is_even()) // Here we don't use the squaring formula because one multiplication // is cheaper than two squarings. return u * ((v << 1) - u); else return ::square(u) + ::square(v); } /** Absolute value. */ numeric abs(const numeric & x) { return ::abs(*x.value); // -> CLN } /** Modulus (in positive representation). * In general, mod(a,b) has the sign of b or is zero, and rem(a,b) has the * sign of a or is zero. This is different from Maple's modp, where the sign * of b is ignored. It is in agreement with Mathematica's Mod. * * @return a mod b in the range [0,abs(b)-1] with sign of b if both are * integer, 0 otherwise. */ numeric mod(const numeric & a, const numeric & b) { if (a.is_integer() && b.is_integer()) return ::mod(The(::cl_I)(*a.value), The(::cl_I)(*b.value)); // -> CLN else return _num0(); // Throw? } /** Modulus (in symmetric representation). * Equivalent to Maple's mods. * * @return a mod b in the range [-iquo(abs(m)-1,2), iquo(abs(m),2)]. */ numeric smod(const numeric & a, const numeric & b) { if (a.is_integer() && b.is_integer()) { cl_I b2 = The(::cl_I)(ceiling1(The(::cl_I)(*b.value) / 2)) - 1; return ::mod(The(::cl_I)(*a.value) + b2, The(::cl_I)(*b.value)) - b2; } else return _num0(); // Throw? } /** Numeric integer remainder. * Equivalent to Maple's irem(a,b) as far as sign conventions are concerned. * In general, mod(a,b) has the sign of b or is zero, and irem(a,b) has the * sign of a or is zero. * * @return remainder of a/b if both are integer, 0 otherwise. */ numeric irem(const numeric & a, const numeric & b) { if (a.is_integer() && b.is_integer()) return ::rem(The(::cl_I)(*a.value), The(::cl_I)(*b.value)); // -> CLN else return _num0(); // Throw? } /** Numeric integer remainder. * Equivalent to Maple's irem(a,b,'q') it obeyes the relation * irem(a,b,q) == a - q*b. In general, mod(a,b) has the sign of b or is zero, * and irem(a,b) has the sign of a or is zero. * * @return remainder of a/b and quotient stored in q if both are integer, * 0 otherwise. */ numeric irem(const numeric & a, const numeric & b, numeric & q) { if (a.is_integer() && b.is_integer()) { // -> CLN cl_I_div_t rem_quo = truncate2(The(::cl_I)(*a.value), The(::cl_I)(*b.value)); q = rem_quo.quotient; return rem_quo.remainder; } else { q = _num0(); return _num0(); // Throw? } } /** Numeric integer quotient. * Equivalent to Maple's iquo as far as sign conventions are concerned. * * @return truncated quotient of a/b if both are integer, 0 otherwise. */ numeric iquo(const numeric & a, const numeric & b) { if (a.is_integer() && b.is_integer()) return truncate1(The(::cl_I)(*a.value), The(::cl_I)(*b.value)); // -> CLN else return _num0(); // Throw? } /** Numeric integer quotient. * Equivalent to Maple's iquo(a,b,'r') it obeyes the relation * r == a - iquo(a,b,r)*b. * * @return truncated quotient of a/b and remainder stored in r if both are * integer, 0 otherwise. */ numeric iquo(const numeric & a, const numeric & b, numeric & r) { if (a.is_integer() && b.is_integer()) { // -> CLN cl_I_div_t rem_quo = truncate2(The(::cl_I)(*a.value), The(::cl_I)(*b.value)); r = rem_quo.remainder; return rem_quo.quotient; } else { r = _num0(); return _num0(); // Throw? } } /** Numeric square root. * If possible, sqrt(z) should respect squares of exact numbers, i.e. sqrt(4) * should return integer 2. * * @param z numeric argument * @return square root of z. Branch cut along negative real axis, the negative * real axis itself where imag(z)==0 and real(z)<0 belongs to the upper part * where imag(z)>0. */ numeric sqrt(const numeric & z) { return ::sqrt(*z.value); // -> CLN } /** Integer numeric square root. */ numeric isqrt(const numeric & x) { if (x.is_integer()) { cl_I root; ::isqrt(The(::cl_I)(*x.value), &root); // -> CLN return root; } else return _num0(); // Throw? } /** Greatest Common Divisor. * * @return The GCD of two numbers if both are integer, a numerical 1 * if they are not. */ numeric gcd(const numeric & a, const numeric & b) { if (a.is_integer() && b.is_integer()) return ::gcd(The(::cl_I)(*a.value), The(::cl_I)(*b.value)); // -> CLN else return _num1(); } /** Least Common Multiple. * * @return The LCM of two numbers if both are integer, the product of those * two numbers if they are not. */ numeric lcm(const numeric & a, const numeric & b) { if (a.is_integer() && b.is_integer()) return ::lcm(The(::cl_I)(*a.value), The(::cl_I)(*b.value)); // -> CLN else return *a.value * *b.value; } /** Floating point evaluation of Archimedes' constant Pi. */ ex PiEvalf(void) { return numeric(::cl_pi(cl_default_float_format)); // -> CLN } /** Floating point evaluation of Euler's constant gamma. */ ex EulerEvalf(void) { return numeric(::cl_eulerconst(cl_default_float_format)); // -> CLN } /** Floating point evaluation of Catalan's constant. */ ex CatalanEvalf(void) { return numeric(::cl_catalanconst(cl_default_float_format)); // -> CLN } // It initializes to 17 digits, because in CLN cl_float_format(17) turns out to // be 61 (<64) while cl_float_format(18)=65. We want to have a cl_LF instead // of cl_SF, cl_FF or cl_DF but everything else is basically arbitrary. _numeric_digits::_numeric_digits() : digits(17) { assert(!too_late); too_late = true; cl_default_float_format = ::cl_float_format(17); } _numeric_digits& _numeric_digits::operator=(long prec) { digits=prec; cl_default_float_format = ::cl_float_format(prec); return *this; } _numeric_digits::operator long() { return (long)digits; } void _numeric_digits::print(ostream & os) const { debugmsg("_numeric_digits print", LOGLEVEL_PRINT); os << digits; } ostream& operator<<(ostream& os, const _numeric_digits & e) { e.print(os); return os; } ////////// // static member variables ////////// // private bool _numeric_digits::too_late = false; /** Accuracy in decimal digits. Only object of this type! Can be set using * assignment from C++ unsigned ints and evaluated like any built-in type. */ _numeric_digits Digits; #ifndef NO_NAMESPACE_GINAC } // namespace GiNaC #endif // ndef NO_NAMESPACE_GINAC