/** @file numeric.cpp * * This file contains the interface to the underlying bignum package. * Its most important design principle is to completely hide the inner * working of that other package from the user of GiNaC. It must either * provide implementation of arithmetic operators and numerical evaluation * of special functions or implement the interface to the bignum package. */ /* * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include #include #include #include #include "numeric.h" #include "ex.h" #include "operators.h" #include "archive.h" #include "tostring.h" #include "utils.h" // CLN should pollute the global namespace as little as possible. Hence, we // include most of it here and include only the part needed for properly // declaring cln::cl_number in numeric.h. This can only be safely done in // namespaced versions of CLN, i.e. version > 1.1.0. Also, we only need a // subset of CLN, so we don't include the complete but only the // essential stuff: #include #include #include #include #include #include #include #include #include #include #include #include namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(numeric, basic, print_func(&numeric::do_print). print_func(&numeric::do_print_latex). print_func(&numeric::do_print_csrc). print_func(&numeric::do_print_csrc_cl_N). print_func(&numeric::do_print_tree). print_func(&numeric::do_print_python_repr)) ////////// // default constructor ////////// /** default ctor. Numerically it initializes to an integer zero. */ numeric::numeric() : basic(TINFO_numeric) { value = cln::cl_I(0); setflag(status_flags::evaluated | status_flags::expanded); } ////////// // other constructors ////////// // public numeric::numeric(int i) : basic(TINFO_numeric) { // Not the whole int-range is available if we don't cast to long // first. This is due to the behaviour of the cl_I-ctor, which // emphasizes efficiency. However, if the integer is small enough // we save space and dereferences by using an immediate type. // (C.f. ) if (i < (1L << (cl_value_len-1)) && i >= -(1L << (cl_value_len-1))) value = cln::cl_I(i); else value = cln::cl_I(static_cast(i)); setflag(status_flags::evaluated | status_flags::expanded); } numeric::numeric(unsigned int i) : basic(TINFO_numeric) { // Not the whole uint-range is available if we don't cast to ulong // first. This is due to the behaviour of the cl_I-ctor, which // emphasizes efficiency. However, if the integer is small enough // we save space and dereferences by using an immediate type. // (C.f. ) if (i < (1U << (cl_value_len-1))) value = cln::cl_I(i); else value = cln::cl_I(static_cast(i)); setflag(status_flags::evaluated | status_flags::expanded); } numeric::numeric(long i) : basic(TINFO_numeric) { value = cln::cl_I(i); setflag(status_flags::evaluated | status_flags::expanded); } numeric::numeric(unsigned long i) : basic(TINFO_numeric) { value = cln::cl_I(i); setflag(status_flags::evaluated | status_flags::expanded); } /** Constructor for rational numerics a/b. * * @exception overflow_error (division by zero) */ numeric::numeric(long numer, long denom) : basic(TINFO_numeric) { if (!denom) throw std::overflow_error("division by zero"); value = cln::cl_I(numer) / cln::cl_I(denom); setflag(status_flags::evaluated | status_flags::expanded); } numeric::numeric(double d) : basic(TINFO_numeric) { // We really want to explicitly use the type cl_LF instead of the // more general cl_F, since that would give us a cl_DF only which // will not be promoted to cl_LF if overflow occurs: value = cln::cl_float(d, cln::default_float_format); setflag(status_flags::evaluated | status_flags::expanded); } /** ctor from C-style string. It also accepts complex numbers in GiNaC * notation like "2+5*I". */ numeric::numeric(const char *s) : basic(TINFO_numeric) { cln::cl_N ctorval = 0; // parse complex numbers (functional but not completely safe, unfortunately // std::string does not understand regexpese): // ss should represent a simple sum like 2+5*I std::string ss = s; std::string::size_type delim; // make this implementation safe by adding explicit sign if (ss.at(0) != '+' && ss.at(0) != '-' && ss.at(0) != '#') ss = '+' + ss; // We use 'E' as exponent marker in the output, but some people insist on // writing 'e' at input, so let's substitute them right at the beginning: while ((delim = ss.find("e"))!=std::string::npos) ss.replace(delim,1,"E"); // main parser loop: do { // chop ss into terms from left to right std::string term; bool imaginary = false; delim = ss.find_first_of(std::string("+-"),1); // Do we have an exponent marker like "31.415E-1"? If so, hop on! if (delim!=std::string::npos && ss.at(delim-1)=='E') delim = ss.find_first_of(std::string("+-"),delim+1); term = ss.substr(0,delim); if (delim!=std::string::npos) ss = ss.substr(delim); // is the term imaginary? if (term.find("I")!=std::string::npos) { // erase 'I': term.erase(term.find("I"),1); // erase '*': if (term.find("*")!=std::string::npos) term.erase(term.find("*"),1); // correct for trivial +/-I without explicit factor on I: if (term.size()==1) term += '1'; imaginary = true; } if (term.find('.')!=std::string::npos || term.find('E')!=std::string::npos) { // CLN's short type cl_SF is not very useful within the GiNaC // framework where we are mainly interested in the arbitrary // precision type cl_LF. Hence we go straight to the construction // of generic floats. In order to create them we have to convert // our own floating point notation used for output and construction // from char * to CLN's generic notation: // 3.14 --> 3.14e0_ // 31.4E-1 --> 31.4e-1_ // and s on. // No exponent marker? Let's add a trivial one. if (term.find("E")==std::string::npos) term += "E0"; // E to lower case term = term.replace(term.find("E"),1,"e"); // append _ to term term += "_" + ToString((unsigned)Digits); // construct float using cln::cl_F(const char *) ctor. if (imaginary) ctorval = ctorval + cln::complex(cln::cl_I(0),cln::cl_F(term.c_str())); else ctorval = ctorval + cln::cl_F(term.c_str()); } else { // this is not a floating point number... if (imaginary) ctorval = ctorval + cln::complex(cln::cl_I(0),cln::cl_R(term.c_str())); else ctorval = ctorval + cln::cl_R(term.c_str()); } } while (delim != std::string::npos); value = ctorval; setflag(status_flags::evaluated | status_flags::expanded); } /** Ctor from CLN types. This is for the initiated user or internal use * only. */ numeric::numeric(const cln::cl_N &z) : basic(TINFO_numeric) { value = z; setflag(status_flags::evaluated | status_flags::expanded); } ////////// // archiving ////////// numeric::numeric(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) { cln::cl_N ctorval = 0; // Read number as string std::string str; if (n.find_string("number", str)) { std::istringstream s(str); cln::cl_idecoded_float re, im; char c; s.get(c); switch (c) { case 'R': // Integer-decoded real number s >> re.sign >> re.mantissa >> re.exponent; ctorval = re.sign * re.mantissa * cln::expt(cln::cl_float(2.0, cln::default_float_format), re.exponent); break; case 'C': // Integer-decoded complex number s >> re.sign >> re.mantissa >> re.exponent; s >> im.sign >> im.mantissa >> im.exponent; ctorval = cln::complex(re.sign * re.mantissa * cln::expt(cln::cl_float(2.0, cln::default_float_format), re.exponent), im.sign * im.mantissa * cln::expt(cln::cl_float(2.0, cln::default_float_format), im.exponent)); break; default: // Ordinary number s.putback(c); s >> ctorval; break; } } value = ctorval; setflag(status_flags::evaluated | status_flags::expanded); } void numeric::archive(archive_node &n) const { inherited::archive(n); // Write number as string std::ostringstream s; if (this->is_crational()) s << cln::the(value); else { // Non-rational numbers are written in an integer-decoded format // to preserve the precision if (this->is_real()) { cln::cl_idecoded_float re = cln::integer_decode_float(cln::the(value)); s << "R"; s << re.sign << " " << re.mantissa << " " << re.exponent; } else { cln::cl_idecoded_float re = cln::integer_decode_float(cln::the(cln::realpart(cln::the(value)))); cln::cl_idecoded_float im = cln::integer_decode_float(cln::the(cln::imagpart(cln::the(value)))); s << "C"; s << re.sign << " " << re.mantissa << " " << re.exponent << " "; s << im.sign << " " << im.mantissa << " " << im.exponent; } } n.add_string("number", s.str()); } DEFAULT_UNARCHIVE(numeric) ////////// // functions overriding virtual functions from base classes ////////// /** Helper function to print a real number in a nicer way than is CLN's * default. Instead of printing 42.0L0 this just prints 42.0 to ostream os * and instead of 3.99168L7 it prints 3.99168E7. This is fine in GiNaC as * long as it only uses cl_LF and no other floating point types that we might * want to visibly distinguish from cl_LF. * * @see numeric::print() */ static void print_real_number(const print_context & c, const cln::cl_R & x) { cln::cl_print_flags ourflags; if (cln::instanceof(x, cln::cl_RA_ring)) { // case 1: integer or rational if (cln::instanceof(x, cln::cl_I_ring) || !is_a(c)) { cln::print_real(c.s, ourflags, x); } else { // rational output in LaTeX context if (x < 0) c.s << "-"; c.s << "\\frac{"; cln::print_real(c.s, ourflags, cln::abs(cln::numerator(cln::the(x)))); c.s << "}{"; cln::print_real(c.s, ourflags, cln::denominator(cln::the(x))); c.s << '}'; } } else { // case 2: float // make CLN believe this number has default_float_format, so it prints // 'E' as exponent marker instead of 'L': ourflags.default_float_format = cln::float_format(cln::the(x)); cln::print_real(c.s, ourflags, x); } } /** Helper function to print integer number in C++ source format. * * @see numeric::print() */ static void print_integer_csrc(const print_context & c, const cln::cl_I & x) { // Print small numbers in compact float format, but larger numbers in // scientific format const int max_cln_int = 536870911; // 2^29-1 if (x >= cln::cl_I(-max_cln_int) && x <= cln::cl_I(max_cln_int)) c.s << cln::cl_I_to_int(x) << ".0"; else c.s << cln::double_approx(x); } /** Helper function to print real number in C++ source format. * * @see numeric::print() */ static void print_real_csrc(const print_context & c, const cln::cl_R & x) { if (cln::instanceof(x, cln::cl_I_ring)) { // Integer number print_integer_csrc(c, cln::the(x)); } else if (cln::instanceof(x, cln::cl_RA_ring)) { // Rational number const cln::cl_I numer = cln::numerator(cln::the(x)); const cln::cl_I denom = cln::denominator(cln::the(x)); if (cln::plusp(x) > 0) { c.s << "("; print_integer_csrc(c, numer); } else { c.s << "-("; print_integer_csrc(c, -numer); } c.s << "/"; print_integer_csrc(c, denom); c.s << ")"; } else { // Anything else c.s << cln::double_approx(x); } } /** Helper function to print real number in C++ source format using cl_N types. * * @see numeric::print() */ static void print_real_cl_N(const print_context & c, const cln::cl_R & x) { if (cln::instanceof(x, cln::cl_I_ring)) { // Integer number c.s << "cln::cl_I(\""; print_real_number(c, x); c.s << "\")"; } else if (cln::instanceof(x, cln::cl_RA_ring)) { // Rational number cln::cl_print_flags ourflags; c.s << "cln::cl_RA(\""; cln::print_rational(c.s, ourflags, cln::the(x)); c.s << "\")"; } else { // Anything else c.s << "cln::cl_F(\""; print_real_number(c, cln::cl_float(1.0, cln::default_float_format) * x); c.s << "_" << Digits << "\")"; } } void numeric::print_numeric(const print_context & c, const char *par_open, const char *par_close, const char *imag_sym, const char *mul_sym, unsigned level) const { const cln::cl_R r = cln::realpart(cln::the(value)); const cln::cl_R i = cln::imagpart(cln::the(value)); if (cln::zerop(i)) { // case 1, real: x or -x if ((precedence() <= level) && (!this->is_nonneg_integer())) { c.s << par_open; print_real_number(c, r); c.s << par_close; } else { print_real_number(c, r); } } else { if (cln::zerop(r)) { // case 2, imaginary: y*I or -y*I if (i == 1) c.s << imag_sym; else { if (precedence()<=level) c.s << par_open; if (i == -1) c.s << "-" << imag_sym; else { print_real_number(c, i); c.s << mul_sym << imag_sym; } if (precedence()<=level) c.s << par_close; } } else { // case 3, complex: x+y*I or x-y*I or -x+y*I or -x-y*I if (precedence() <= level) c.s << par_open; print_real_number(c, r); if (i < 0) { if (i == -1) { c.s << "-" << imag_sym; } else { print_real_number(c, i); c.s << mul_sym << imag_sym; } } else { if (i == 1) { c.s << "+" << imag_sym; } else { c.s << "+"; print_real_number(c, i); c.s << mul_sym << imag_sym; } } if (precedence() <= level) c.s << par_close; } } } void numeric::do_print(const print_context & c, unsigned level) const { print_numeric(c, "(", ")", "I", "*", level); } void numeric::do_print_latex(const print_latex & c, unsigned level) const { print_numeric(c, "{(", ")}", "i", " ", level); } void numeric::do_print_csrc(const print_csrc & c, unsigned level) const { std::ios::fmtflags oldflags = c.s.flags(); c.s.setf(std::ios::scientific); int oldprec = c.s.precision(); // Set precision if (is_a(c)) c.s.precision(std::numeric_limits::digits10 + 1); else c.s.precision(std::numeric_limits::digits10 + 1); if (this->is_real()) { // Real number print_real_csrc(c, cln::the(value)); } else { // Complex number c.s << "std::complex<"; if (is_a(c)) c.s << "double>("; else c.s << "float>("; print_real_csrc(c, cln::realpart(cln::the(value))); c.s << ","; print_real_csrc(c, cln::imagpart(cln::the(value))); c.s << ")"; } c.s.flags(oldflags); c.s.precision(oldprec); } void numeric::do_print_csrc_cl_N(const print_csrc_cl_N & c, unsigned level) const { if (this->is_real()) { // Real number print_real_cl_N(c, cln::the(value)); } else { // Complex number c.s << "cln::complex("; print_real_cl_N(c, cln::realpart(cln::the(value))); c.s << ","; print_real_cl_N(c, cln::imagpart(cln::the(value))); c.s << ")"; } } void numeric::do_print_tree(const print_tree & c, unsigned level) const { c.s << std::string(level, ' ') << cln::the(value) << " (" << class_name() << ")" << " @" << this << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << std::endl; } void numeric::do_print_python_repr(const print_python_repr & c, unsigned level) const { c.s << class_name() << "('"; print_numeric(c, "(", ")", "I", "*", level); c.s << "')"; } bool numeric::info(unsigned inf) const { switch (inf) { case info_flags::numeric: case info_flags::polynomial: case info_flags::rational_function: return true; case info_flags::real: return is_real(); case info_flags::rational: case info_flags::rational_polynomial: return is_rational(); case info_flags::crational: case info_flags::crational_polynomial: return is_crational(); case info_flags::integer: case info_flags::integer_polynomial: return is_integer(); case info_flags::cinteger: case info_flags::cinteger_polynomial: return is_cinteger(); case info_flags::positive: return is_positive(); case info_flags::negative: return is_negative(); case info_flags::nonnegative: return !is_negative(); case info_flags::posint: return is_pos_integer(); case info_flags::negint: return is_integer() && is_negative(); case info_flags::nonnegint: return is_nonneg_integer(); case info_flags::even: return is_even(); case info_flags::odd: return is_odd(); case info_flags::prime: return is_prime(); case info_flags::algebraic: return !is_real(); } return false; } int numeric::degree(const ex & s) const { return 0; } int numeric::ldegree(const ex & s) const { return 0; } ex numeric::coeff(const ex & s, int n) const { return n==0 ? *this : _ex0; } /** Disassemble real part and imaginary part to scan for the occurrence of a * single number. Also handles the imaginary unit. It ignores the sign on * both this and the argument, which may lead to what might appear as funny * results: (2+I).has(-2) -> true. But this is consistent, since we also * would like to have (-2+I).has(2) -> true and we want to think about the * sign as a multiplicative factor. */ bool numeric::has(const ex &other) const { if (!is_exactly_a(other)) return false; const numeric &o = ex_to(other); if (this->is_equal(o) || this->is_equal(-o)) return true; if (o.imag().is_zero()) // e.g. scan for 3 in -3*I return (this->real().is_equal(o) || this->imag().is_equal(o) || this->real().is_equal(-o) || this->imag().is_equal(-o)); else { if (o.is_equal(I)) // e.g scan for I in 42*I return !this->is_real(); if (o.real().is_zero()) // e.g. scan for 2*I in 2*I+1 return (this->real().has(o*I) || this->imag().has(o*I) || this->real().has(-o*I) || this->imag().has(-o*I)); } return false; } /** Evaluation of numbers doesn't do anything at all. */ ex numeric::eval(int level) const { // Warning: if this is ever gonna do something, the ex ctors from all kinds // of numbers should be checking for status_flags::evaluated. return this->hold(); } /** Cast numeric into a floating-point object. For example exact numeric(1) is * returned as a 1.0000000000000000000000 and so on according to how Digits is * currently set. In case the object already was a floating point number the * precision is trimmed to match the currently set default. * * @param level ignored, only needed for overriding basic::evalf. * @return an ex-handle to a numeric. */ ex numeric::evalf(int level) const { // level can safely be discarded for numeric objects. return numeric(cln::cl_float(1.0, cln::default_float_format) * (cln::the(value))); } // protected int numeric::compare_same_type(const basic &other) const { GINAC_ASSERT(is_exactly_a(other)); const numeric &o = static_cast(other); return this->compare(o); } bool numeric::is_equal_same_type(const basic &other) const { GINAC_ASSERT(is_exactly_a(other)); const numeric &o = static_cast(other); return this->is_equal(o); } unsigned numeric::calchash() const { // Base computation of hashvalue on CLN's hashcode. Note: That depends // only on the number's value, not its type or precision (i.e. a true // equivalence relation on numbers). As a consequence, 3 and 3.0 share // the same hashvalue. That shouldn't really matter, though. setflag(status_flags::hash_calculated); hashvalue = golden_ratio_hash(cln::equal_hashcode(cln::the(value))); return hashvalue; } ////////// // new virtual functions which can be overridden by derived classes ////////// // none ////////// // non-virtual functions in this class ////////// // public /** Numerical addition method. Adds argument to *this and returns result as * a numeric object. */ const numeric numeric::add(const numeric &other) const { return numeric(cln::the(value)+cln::the(other.value)); } /** Numerical subtraction method. Subtracts argument from *this and returns * result as a numeric object. */ const numeric numeric::sub(const numeric &other) const { return numeric(cln::the(value)-cln::the(other.value)); } /** Numerical multiplication method. Multiplies *this and argument and returns * result as a numeric object. */ const numeric numeric::mul(const numeric &other) const { return numeric(cln::the(value)*cln::the(other.value)); } /** Numerical division method. Divides *this by argument and returns result as * a numeric object. * * @exception overflow_error (division by zero) */ const numeric numeric::div(const numeric &other) const { if (cln::zerop(cln::the(other.value))) throw std::overflow_error("numeric::div(): division by zero"); return numeric(cln::the(value)/cln::the(other.value)); } /** Numerical exponentiation. Raises *this to the power given as argument and * returns result as a numeric object. */ const numeric numeric::power(const numeric &other) const { // Shortcut for efficiency and numeric stability (as in 1.0 exponent): // trap the neutral exponent. if (&other==_num1_p || cln::equal(cln::the(other.value),cln::the(_num1.value))) return *this; if (cln::zerop(cln::the(value))) { if (cln::zerop(cln::the(other.value))) throw std::domain_error("numeric::eval(): pow(0,0) is undefined"); else if (cln::zerop(cln::realpart(cln::the(other.value)))) throw std::domain_error("numeric::eval(): pow(0,I) is undefined"); else if (cln::minusp(cln::realpart(cln::the(other.value)))) throw std::overflow_error("numeric::eval(): division by zero"); else return _num0; } return numeric(cln::expt(cln::the(value),cln::the(other.value))); } /** Numerical addition method. Adds argument to *this and returns result as * a numeric object on the heap. Use internally only for direct wrapping into * an ex object, where the result would end up on the heap anyways. */ const numeric &numeric::add_dyn(const numeric &other) const { // Efficiency shortcut: trap the neutral element by pointer. This hack // is supposed to keep the number of distinct numeric objects low. if (this==_num0_p) return other; else if (&other==_num0_p) return *this; return static_cast((new numeric(cln::the(value)+cln::the(other.value)))-> setflag(status_flags::dynallocated)); } /** Numerical subtraction method. Subtracts argument from *this and returns * result as a numeric object on the heap. Use internally only for direct * wrapping into an ex object, where the result would end up on the heap * anyways. */ const numeric &numeric::sub_dyn(const numeric &other) const { // Efficiency shortcut: trap the neutral exponent (first by pointer). This // hack is supposed to keep the number of distinct numeric objects low. if (&other==_num0_p || cln::zerop(cln::the(other.value))) return *this; return static_cast((new numeric(cln::the(value)-cln::the(other.value)))-> setflag(status_flags::dynallocated)); } /** Numerical multiplication method. Multiplies *this and argument and returns * result as a numeric object on the heap. Use internally only for direct * wrapping into an ex object, where the result would end up on the heap * anyways. */ const numeric &numeric::mul_dyn(const numeric &other) const { // Efficiency shortcut: trap the neutral element by pointer. This hack // is supposed to keep the number of distinct numeric objects low. if (this==_num1_p) return other; else if (&other==_num1_p) return *this; return static_cast((new numeric(cln::the(value)*cln::the(other.value)))-> setflag(status_flags::dynallocated)); } /** Numerical division method. Divides *this by argument and returns result as * a numeric object on the heap. Use internally only for direct wrapping * into an ex object, where the result would end up on the heap * anyways. * * @exception overflow_error (division by zero) */ const numeric &numeric::div_dyn(const numeric &other) const { // Efficiency shortcut: trap the neutral element by pointer. This hack // is supposed to keep the number of distinct numeric objects low. if (&other==_num1_p) return *this; if (cln::zerop(cln::the(other.value))) throw std::overflow_error("division by zero"); return static_cast((new numeric(cln::the(value)/cln::the(other.value)))-> setflag(status_flags::dynallocated)); } /** Numerical exponentiation. Raises *this to the power given as argument and * returns result as a numeric object on the heap. Use internally only for * direct wrapping into an ex object, where the result would end up on the * heap anyways. */ const numeric &numeric::power_dyn(const numeric &other) const { // Efficiency shortcut: trap the neutral exponent (first try by pointer, then // try harder, since calls to cln::expt() below may return amazing results for // floating point exponent 1.0). if (&other==_num1_p || cln::equal(cln::the(other.value),cln::the(_num1.value))) return *this; if (cln::zerop(cln::the(value))) { if (cln::zerop(cln::the(other.value))) throw std::domain_error("numeric::eval(): pow(0,0) is undefined"); else if (cln::zerop(cln::realpart(cln::the(other.value)))) throw std::domain_error("numeric::eval(): pow(0,I) is undefined"); else if (cln::minusp(cln::realpart(cln::the(other.value)))) throw std::overflow_error("numeric::eval(): division by zero"); else return _num0; } return static_cast((new numeric(cln::expt(cln::the(value),cln::the(other.value))))-> setflag(status_flags::dynallocated)); } const numeric &numeric::operator=(int i) { return operator=(numeric(i)); } const numeric &numeric::operator=(unsigned int i) { return operator=(numeric(i)); } const numeric &numeric::operator=(long i) { return operator=(numeric(i)); } const numeric &numeric::operator=(unsigned long i) { return operator=(numeric(i)); } const numeric &numeric::operator=(double d) { return operator=(numeric(d)); } const numeric &numeric::operator=(const char * s) { return operator=(numeric(s)); } /** Inverse of a number. */ const numeric numeric::inverse() const { if (cln::zerop(cln::the(value))) throw std::overflow_error("numeric::inverse(): division by zero"); return numeric(cln::recip(cln::the(value))); } /** Return the complex half-plane (left or right) in which the number lies. * csgn(x)==0 for x==0, csgn(x)==1 for Re(x)>0 or Re(x)=0 and Im(x)>0, * csgn(x)==-1 for Re(x)<0 or Re(x)=0 and Im(x)<0. * * @see numeric::compare(const numeric &other) */ int numeric::csgn() const { if (cln::zerop(cln::the(value))) return 0; cln::cl_R r = cln::realpart(cln::the(value)); if (!cln::zerop(r)) { if (cln::plusp(r)) return 1; else return -1; } else { if (cln::plusp(cln::imagpart(cln::the(value)))) return 1; else return -1; } } /** This method establishes a canonical order on all numbers. For complex * numbers this is not possible in a mathematically consistent way but we need * to establish some order and it ought to be fast. So we simply define it * to be compatible with our method csgn. * * @return csgn(*this-other) * @see numeric::csgn() */ int numeric::compare(const numeric &other) const { // Comparing two real numbers? if (cln::instanceof(value, cln::cl_R_ring) && cln::instanceof(other.value, cln::cl_R_ring)) // Yes, so just cln::compare them return cln::compare(cln::the(value), cln::the(other.value)); else { // No, first cln::compare real parts... cl_signean real_cmp = cln::compare(cln::realpart(cln::the(value)), cln::realpart(cln::the(other.value))); if (real_cmp) return real_cmp; // ...and then the imaginary parts. return cln::compare(cln::imagpart(cln::the(value)), cln::imagpart(cln::the(other.value))); } } bool numeric::is_equal(const numeric &other) const { return cln::equal(cln::the(value),cln::the(other.value)); } /** True if object is zero. */ bool numeric::is_zero() const { return cln::zerop(cln::the(value)); } /** True if object is not complex and greater than zero. */ bool numeric::is_positive() const { if (cln::instanceof(value, cln::cl_R_ring)) // real? return cln::plusp(cln::the(value)); return false; } /** True if object is not complex and less than zero. */ bool numeric::is_negative() const { if (cln::instanceof(value, cln::cl_R_ring)) // real? return cln::minusp(cln::the(value)); return false; } /** True if object is a non-complex integer. */ bool numeric::is_integer() const { return cln::instanceof(value, cln::cl_I_ring); } /** True if object is an exact integer greater than zero. */ bool numeric::is_pos_integer() const { return (cln::instanceof(value, cln::cl_I_ring) && cln::plusp(cln::the(value))); } /** True if object is an exact integer greater or equal zero. */ bool numeric::is_nonneg_integer() const { return (cln::instanceof(value, cln::cl_I_ring) && !cln::minusp(cln::the(value))); } /** True if object is an exact even integer. */ bool numeric::is_even() const { return (cln::instanceof(value, cln::cl_I_ring) && cln::evenp(cln::the(value))); } /** True if object is an exact odd integer. */ bool numeric::is_odd() const { return (cln::instanceof(value, cln::cl_I_ring) && cln::oddp(cln::the(value))); } /** Probabilistic primality test. * * @return true if object is exact integer and prime. */ bool numeric::is_prime() const { return (cln::instanceof(value, cln::cl_I_ring) // integer? && cln::plusp(cln::the(value)) // positive? && cln::isprobprime(cln::the(value))); } /** True if object is an exact rational number, may even be complex * (denominator may be unity). */ bool numeric::is_rational() const { return cln::instanceof(value, cln::cl_RA_ring); } /** True if object is a real integer, rational or float (but not complex). */ bool numeric::is_real() const { return cln::instanceof(value, cln::cl_R_ring); } bool numeric::operator==(const numeric &other) const { return cln::equal(cln::the(value), cln::the(other.value)); } bool numeric::operator!=(const numeric &other) const { return !cln::equal(cln::the(value), cln::the(other.value)); } /** True if object is element of the domain of integers extended by I, i.e. is * of the form a+b*I, where a and b are integers. */ bool numeric::is_cinteger() const { if (cln::instanceof(value, cln::cl_I_ring)) return true; else if (!this->is_real()) { // complex case, handle n+m*I if (cln::instanceof(cln::realpart(cln::the(value)), cln::cl_I_ring) && cln::instanceof(cln::imagpart(cln::the(value)), cln::cl_I_ring)) return true; } return false; } /** True if object is an exact rational number, may even be complex * (denominator may be unity). */ bool numeric::is_crational() const { if (cln::instanceof(value, cln::cl_RA_ring)) return true; else if (!this->is_real()) { // complex case, handle Q(i): if (cln::instanceof(cln::realpart(cln::the(value)), cln::cl_RA_ring) && cln::instanceof(cln::imagpart(cln::the(value)), cln::cl_RA_ring)) return true; } return false; } /** Numerical comparison: less. * * @exception invalid_argument (complex inequality) */ bool numeric::operator<(const numeric &other) const { if (this->is_real() && other.is_real()) return (cln::the(value) < cln::the(other.value)); throw std::invalid_argument("numeric::operator<(): complex inequality"); } /** Numerical comparison: less or equal. * * @exception invalid_argument (complex inequality) */ bool numeric::operator<=(const numeric &other) const { if (this->is_real() && other.is_real()) return (cln::the(value) <= cln::the(other.value)); throw std::invalid_argument("numeric::operator<=(): complex inequality"); } /** Numerical comparison: greater. * * @exception invalid_argument (complex inequality) */ bool numeric::operator>(const numeric &other) const { if (this->is_real() && other.is_real()) return (cln::the(value) > cln::the(other.value)); throw std::invalid_argument("numeric::operator>(): complex inequality"); } /** Numerical comparison: greater or equal. * * @exception invalid_argument (complex inequality) */ bool numeric::operator>=(const numeric &other) const { if (this->is_real() && other.is_real()) return (cln::the(value) >= cln::the(other.value)); throw std::invalid_argument("numeric::operator>=(): complex inequality"); } /** Converts numeric types to machine's int. You should check with * is_integer() if the number is really an integer before calling this method. * You may also consider checking the range first. */ int numeric::to_int() const { GINAC_ASSERT(this->is_integer()); return cln::cl_I_to_int(cln::the(value)); } /** Converts numeric types to machine's long. You should check with * is_integer() if the number is really an integer before calling this method. * You may also consider checking the range first. */ long numeric::to_long() const { GINAC_ASSERT(this->is_integer()); return cln::cl_I_to_long(cln::the(value)); } /** Converts numeric types to machine's double. You should check with is_real() * if the number is really not complex before calling this method. */ double numeric::to_double() const { GINAC_ASSERT(this->is_real()); return cln::double_approx(cln::realpart(cln::the(value))); } /** Returns a new CLN object of type cl_N, representing the value of *this. * This method may be used when mixing GiNaC and CLN in one project. */ cln::cl_N numeric::to_cl_N() const { return cln::cl_N(cln::the(value)); } /** Real part of a number. */ const numeric numeric::real() const { return numeric(cln::realpart(cln::the(value))); } /** Imaginary part of a number. */ const numeric numeric::imag() const { return numeric(cln::imagpart(cln::the(value))); } /** Numerator. Computes the numerator of rational numbers, rationalized * numerator of complex if real and imaginary part are both rational numbers * (i.e numer(4/3+5/6*I) == 8+5*I), the number carrying the sign in all other * cases. */ const numeric numeric::numer() const { if (cln::instanceof(value, cln::cl_I_ring)) return numeric(*this); // integer case else if (cln::instanceof(value, cln::cl_RA_ring)) return numeric(cln::numerator(cln::the(value))); else if (!this->is_real()) { // complex case, handle Q(i): const cln::cl_RA r = cln::the(cln::realpart(cln::the(value))); const cln::cl_RA i = cln::the(cln::imagpart(cln::the(value))); if (cln::instanceof(r, cln::cl_I_ring) && cln::instanceof(i, cln::cl_I_ring)) return numeric(*this); if (cln::instanceof(r, cln::cl_I_ring) && cln::instanceof(i, cln::cl_RA_ring)) return numeric(cln::complex(r*cln::denominator(i), cln::numerator(i))); if (cln::instanceof(r, cln::cl_RA_ring) && cln::instanceof(i, cln::cl_I_ring)) return numeric(cln::complex(cln::numerator(r), i*cln::denominator(r))); if (cln::instanceof(r, cln::cl_RA_ring) && cln::instanceof(i, cln::cl_RA_ring)) { const cln::cl_I s = cln::lcm(cln::denominator(r), cln::denominator(i)); return numeric(cln::complex(cln::numerator(r)*(cln::exquo(s,cln::denominator(r))), cln::numerator(i)*(cln::exquo(s,cln::denominator(i))))); } } // at least one float encountered return numeric(*this); } /** Denominator. Computes the denominator of rational numbers, common integer * denominator of complex if real and imaginary part are both rational numbers * (i.e denom(4/3+5/6*I) == 6), one in all other cases. */ const numeric numeric::denom() const { if (cln::instanceof(value, cln::cl_I_ring)) return _num1; // integer case if (cln::instanceof(value, cln::cl_RA_ring)) return numeric(cln::denominator(cln::the(value))); if (!this->is_real()) { // complex case, handle Q(i): const cln::cl_RA r = cln::the(cln::realpart(cln::the(value))); const cln::cl_RA i = cln::the(cln::imagpart(cln::the(value))); if (cln::instanceof(r, cln::cl_I_ring) && cln::instanceof(i, cln::cl_I_ring)) return _num1; if (cln::instanceof(r, cln::cl_I_ring) && cln::instanceof(i, cln::cl_RA_ring)) return numeric(cln::denominator(i)); if (cln::instanceof(r, cln::cl_RA_ring) && cln::instanceof(i, cln::cl_I_ring)) return numeric(cln::denominator(r)); if (cln::instanceof(r, cln::cl_RA_ring) && cln::instanceof(i, cln::cl_RA_ring)) return numeric(cln::lcm(cln::denominator(r), cln::denominator(i))); } // at least one float encountered return _num1; } /** Size in binary notation. For integers, this is the smallest n >= 0 such * that -2^n <= x < 2^n. If x > 0, this is the unique n > 0 such that * 2^(n-1) <= x < 2^n. * * @return number of bits (excluding sign) needed to represent that number * in two's complement if it is an integer, 0 otherwise. */ int numeric::int_length() const { if (cln::instanceof(value, cln::cl_I_ring)) return cln::integer_length(cln::the(value)); else return 0; } ////////// // global constants ////////// /** Imaginary unit. This is not a constant but a numeric since we are * natively handing complex numbers anyways, so in each expression containing * an I it is automatically eval'ed away anyhow. */ const numeric I = numeric(cln::complex(cln::cl_I(0),cln::cl_I(1))); /** Exponential function. * * @return arbitrary precision numerical exp(x). */ const numeric exp(const numeric &x) { return cln::exp(x.to_cl_N()); } /** Natural logarithm. * * @param x complex number * @return arbitrary precision numerical log(x). * @exception pole_error("log(): logarithmic pole",0) */ const numeric log(const numeric &x) { if (x.is_zero()) throw pole_error("log(): logarithmic pole",0); return cln::log(x.to_cl_N()); } /** Numeric sine (trigonometric function). * * @return arbitrary precision numerical sin(x). */ const numeric sin(const numeric &x) { return cln::sin(x.to_cl_N()); } /** Numeric cosine (trigonometric function). * * @return arbitrary precision numerical cos(x). */ const numeric cos(const numeric &x) { return cln::cos(x.to_cl_N()); } /** Numeric tangent (trigonometric function). * * @return arbitrary precision numerical tan(x). */ const numeric tan(const numeric &x) { return cln::tan(x.to_cl_N()); } /** Numeric inverse sine (trigonometric function). * * @return arbitrary precision numerical asin(x). */ const numeric asin(const numeric &x) { return cln::asin(x.to_cl_N()); } /** Numeric inverse cosine (trigonometric function). * * @return arbitrary precision numerical acos(x). */ const numeric acos(const numeric &x) { return cln::acos(x.to_cl_N()); } /** Arcustangent. * * @param x complex number * @return atan(x) * @exception pole_error("atan(): logarithmic pole",0) */ const numeric atan(const numeric &x) { if (!x.is_real() && x.real().is_zero() && abs(x.imag()).is_equal(_num1)) throw pole_error("atan(): logarithmic pole",0); return cln::atan(x.to_cl_N()); } /** Arcustangent. * * @param x real number * @param y real number * @return atan(y/x) */ const numeric atan(const numeric &y, const numeric &x) { if (x.is_real() && y.is_real()) return cln::atan(cln::the(x.to_cl_N()), cln::the(y.to_cl_N())); else throw std::invalid_argument("atan(): complex argument"); } /** Numeric hyperbolic sine (trigonometric function). * * @return arbitrary precision numerical sinh(x). */ const numeric sinh(const numeric &x) { return cln::sinh(x.to_cl_N()); } /** Numeric hyperbolic cosine (trigonometric function). * * @return arbitrary precision numerical cosh(x). */ const numeric cosh(const numeric &x) { return cln::cosh(x.to_cl_N()); } /** Numeric hyperbolic tangent (trigonometric function). * * @return arbitrary precision numerical tanh(x). */ const numeric tanh(const numeric &x) { return cln::tanh(x.to_cl_N()); } /** Numeric inverse hyperbolic sine (trigonometric function). * * @return arbitrary precision numerical asinh(x). */ const numeric asinh(const numeric &x) { return cln::asinh(x.to_cl_N()); } /** Numeric inverse hyperbolic cosine (trigonometric function). * * @return arbitrary precision numerical acosh(x). */ const numeric acosh(const numeric &x) { return cln::acosh(x.to_cl_N()); } /** Numeric inverse hyperbolic tangent (trigonometric function). * * @return arbitrary precision numerical atanh(x). */ const numeric atanh(const numeric &x) { return cln::atanh(x.to_cl_N()); } /*static cln::cl_N Li2_series(const ::cl_N &x, const ::float_format_t &prec) { // Note: argument must be in the unit circle // This is very inefficient unless we have fast floating point Bernoulli // numbers implemented! cln::cl_N c1 = -cln::log(1-x); cln::cl_N c2 = c1; // hard-wire the first two Bernoulli numbers cln::cl_N acc = c1 - cln::square(c1)/4; cln::cl_N aug; cln::cl_F pisq = cln::square(cln::cl_pi(prec)); // pi^2 cln::cl_F piac = cln::cl_float(1, prec); // accumulator: pi^(2*i) unsigned i = 1; c1 = cln::square(c1); do { c2 = c1 * c2; piac = piac * pisq; aug = c2 * (*(bernoulli(numeric(2*i)).clnptr())) / cln::factorial(2*i+1); // aug = c2 * cln::cl_I(i%2 ? 1 : -1) / cln::cl_I(2*i+1) * cln::cl_zeta(2*i, prec) / piac / (cln::cl_I(1)<<(2*i-1)); acc = acc + aug; ++i; } while (acc != acc+aug); return acc; }*/ /** Numeric evaluation of Dilogarithm within circle of convergence (unit * circle) using a power series. */ static cln::cl_N Li2_series(const cln::cl_N &x, const cln::float_format_t &prec) { // Note: argument must be in the unit circle cln::cl_N aug, acc; cln::cl_N num = cln::complex(cln::cl_float(1, prec), 0); cln::cl_I den = 0; unsigned i = 1; do { num = num * x; den = den + i; // 1, 4, 9, 16, ... i += 2; aug = num / den; acc = acc + aug; } while (acc != acc+aug); return acc; } /** Folds Li2's argument inside a small rectangle to enhance convergence. */ static cln::cl_N Li2_projection(const cln::cl_N &x, const cln::float_format_t &prec) { const cln::cl_R re = cln::realpart(x); const cln::cl_R im = cln::imagpart(x); if (re > cln::cl_F(".5")) // zeta(2) - Li2(1-x) - log(x)*log(1-x) return(cln::zeta(2) - Li2_series(1-x, prec) - cln::log(x)*cln::log(1-x)); if ((re <= 0 && cln::abs(im) > cln::cl_F(".75")) || (re < cln::cl_F("-.5"))) // -log(1-x)^2 / 2 - Li2(x/(x-1)) return(- cln::square(cln::log(1-x))/2 - Li2_series(x/(x-1), prec)); if (re > 0 && cln::abs(im) > cln::cl_LF(".75")) // Li2(x^2)/2 - Li2(-x) return(Li2_projection(cln::square(x), prec)/2 - Li2_projection(-x, prec)); return Li2_series(x, prec); } /** Numeric evaluation of Dilogarithm. The domain is the entire complex plane, * the branch cut lies along the positive real axis, starting at 1 and * continuous with quadrant IV. * * @return arbitrary precision numerical Li2(x). */ const numeric Li2(const numeric &x) { if (x.is_zero()) return _num0; // what is the desired float format? // first guess: default format cln::float_format_t prec = cln::default_float_format; const cln::cl_N value = x.to_cl_N(); // second guess: the argument's format if (!x.real().is_rational()) prec = cln::float_format(cln::the(cln::realpart(value))); else if (!x.imag().is_rational()) prec = cln::float_format(cln::the(cln::imagpart(value))); if (cln::the(value)==1) // may cause trouble with log(1-x) return cln::zeta(2, prec); if (cln::abs(value) > 1) // -log(-x)^2 / 2 - zeta(2) - Li2(1/x) return(- cln::square(cln::log(-value))/2 - cln::zeta(2, prec) - Li2_projection(cln::recip(value), prec)); else return Li2_projection(x.to_cl_N(), prec); } /** Numeric evaluation of Riemann's Zeta function. Currently works only for * integer arguments. */ const numeric zeta(const numeric &x) { // A dirty hack to allow for things like zeta(3.0), since CLN currently // only knows about integer arguments and zeta(3).evalf() automatically // cascades down to zeta(3.0).evalf(). The trick is to rely on 3.0-3 // being an exact zero for CLN, which can be tested and then we can just // pass the number casted to an int: if (x.is_real()) { const int aux = (int)(cln::double_approx(cln::the(x.to_cl_N()))); if (cln::zerop(x.to_cl_N()-aux)) return cln::zeta(aux); } throw dunno(); } /** The Gamma function. * This is only a stub! */ const numeric lgamma(const numeric &x) { throw dunno(); } const numeric tgamma(const numeric &x) { throw dunno(); } /** The psi function (aka polygamma function). * This is only a stub! */ const numeric psi(const numeric &x) { throw dunno(); } /** The psi functions (aka polygamma functions). * This is only a stub! */ const numeric psi(const numeric &n, const numeric &x) { throw dunno(); } /** Factorial combinatorial function. * * @param n integer argument >= 0 * @exception range_error (argument must be integer >= 0) */ const numeric factorial(const numeric &n) { if (!n.is_nonneg_integer()) throw std::range_error("numeric::factorial(): argument must be integer >= 0"); return numeric(cln::factorial(n.to_int())); } /** The double factorial combinatorial function. (Scarcely used, but still * useful in cases, like for exact results of tgamma(n+1/2) for instance.) * * @param n integer argument >= -1 * @return n!! == n * (n-2) * (n-4) * ... * ({1|2}) with 0!! == (-1)!! == 1 * @exception range_error (argument must be integer >= -1) */ const numeric doublefactorial(const numeric &n) { if (n.is_equal(_num_1)) return _num1; if (!n.is_nonneg_integer()) throw std::range_error("numeric::doublefactorial(): argument must be integer >= -1"); return numeric(cln::doublefactorial(n.to_int())); } /** The Binomial coefficients. It computes the binomial coefficients. For * integer n and k and positive n this is the number of ways of choosing k * objects from n distinct objects. If n is negative, the formula * binomial(n,k) == (-1)^k*binomial(k-n-1,k) is used to compute the result. */ const numeric binomial(const numeric &n, const numeric &k) { if (n.is_integer() && k.is_integer()) { if (n.is_nonneg_integer()) { if (k.compare(n)!=1 && k.compare(_num0)!=-1) return numeric(cln::binomial(n.to_int(),k.to_int())); else return _num0; } else { return _num_1.power(k)*binomial(k-n-_num1,k); } } // should really be gamma(n+1)/gamma(r+1)/gamma(n-r+1) or a suitable limit throw std::range_error("numeric::binomial(): donīt know how to evaluate that."); } /** Bernoulli number. The nth Bernoulli number is the coefficient of x^n/n! * in the expansion of the function x/(e^x-1). * * @return the nth Bernoulli number (a rational number). * @exception range_error (argument must be integer >= 0) */ const numeric bernoulli(const numeric &nn) { if (!nn.is_integer() || nn.is_negative()) throw std::range_error("numeric::bernoulli(): argument must be integer >= 0"); // Method: // // The Bernoulli numbers are rational numbers that may be computed using // the relation // // B_n = - 1/(n+1) * sum_{k=0}^{n-1}(binomial(n+1,k)*B_k) // // with B(0) = 1. Since the n'th Bernoulli number depends on all the // previous ones, the computation is necessarily very expensive. There are // several other ways of computing them, a particularly good one being // cl_I s = 1; // cl_I c = n+1; // cl_RA Bern = 0; // for (unsigned i=0; i results; static unsigned next_r = 0; // algorithm not applicable to B(2), so just store it if (!next_r) { results.push_back(cln::recip(cln::cl_RA(6))); next_r = 4; } if (n) if (p < (1UL<= 1, n >= 0. // // (Proof: For fixed m, the LHS and the RHS satisfy the same recurrence // w.r.t. n, and the initial values (n=0, n=1) agree. Hence all values // agree.) // Replace m by m+1: // F(n+m+1) = F(m)*F(n) + F(m+1)*F(n+1) for m >= 0, n >= 0 // Now put in m = n, to get // F(2n) = (F(n+1)-F(n))*F(n) + F(n)*F(n+1) = F(n)*(2*F(n+1) - F(n)) // F(2n+1) = F(n)^2 + F(n+1)^2 // hence // F(2n+2) = F(n+1)*(2*F(n) + F(n+1)) if (n.is_zero()) return _num0; if (n.is_negative()) if (n.is_even()) return -fibonacci(-n); else return fibonacci(-n); cln::cl_I u(0); cln::cl_I v(1); cln::cl_I m = cln::the(n.to_cl_N()) >> 1L; // floor(n/2); for (uintL bit=cln::integer_length(m); bit>0; --bit) { // Since a squaring is cheaper than a multiplication, better use // three squarings instead of one multiplication and two squarings. cln::cl_I u2 = cln::square(u); cln::cl_I v2 = cln::square(v); if (cln::logbitp(bit-1, m)) { v = cln::square(u + v) - u2; u = u2 + v2; } else { u = v2 - cln::square(v - u); v = u2 + v2; } } if (n.is_even()) // Here we don't use the squaring formula because one multiplication // is cheaper than two squarings. return u * ((v << 1) - u); else return cln::square(u) + cln::square(v); } /** Absolute value. */ const numeric abs(const numeric& x) { return cln::abs(x.to_cl_N()); } /** Modulus (in positive representation). * In general, mod(a,b) has the sign of b or is zero, and rem(a,b) has the * sign of a or is zero. This is different from Maple's modp, where the sign * of b is ignored. It is in agreement with Mathematica's Mod. * * @return a mod b in the range [0,abs(b)-1] with sign of b if both are * integer, 0 otherwise. */ const numeric mod(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) return cln::mod(cln::the(a.to_cl_N()), cln::the(b.to_cl_N())); else return _num0; } /** Modulus (in symmetric representation). * Equivalent to Maple's mods. * * @return a mod b in the range [-iquo(abs(m)-1,2), iquo(abs(m),2)]. */ const numeric smod(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) { const cln::cl_I b2 = cln::ceiling1(cln::the(b.to_cl_N()) >> 1) - 1; return cln::mod(cln::the(a.to_cl_N()) + b2, cln::the(b.to_cl_N())) - b2; } else return _num0; } /** Numeric integer remainder. * Equivalent to Maple's irem(a,b) as far as sign conventions are concerned. * In general, mod(a,b) has the sign of b or is zero, and irem(a,b) has the * sign of a or is zero. * * @return remainder of a/b if both are integer, 0 otherwise. * @exception overflow_error (division by zero) if b is zero. */ const numeric irem(const numeric &a, const numeric &b) { if (b.is_zero()) throw std::overflow_error("numeric::irem(): division by zero"); if (a.is_integer() && b.is_integer()) return cln::rem(cln::the(a.to_cl_N()), cln::the(b.to_cl_N())); else return _num0; } /** Numeric integer remainder. * Equivalent to Maple's irem(a,b,'q') it obeyes the relation * irem(a,b,q) == a - q*b. In general, mod(a,b) has the sign of b or is zero, * and irem(a,b) has the sign of a or is zero. * * @return remainder of a/b and quotient stored in q if both are integer, * 0 otherwise. * @exception overflow_error (division by zero) if b is zero. */ const numeric irem(const numeric &a, const numeric &b, numeric &q) { if (b.is_zero()) throw std::overflow_error("numeric::irem(): division by zero"); if (a.is_integer() && b.is_integer()) { const cln::cl_I_div_t rem_quo = cln::truncate2(cln::the(a.to_cl_N()), cln::the(b.to_cl_N())); q = rem_quo.quotient; return rem_quo.remainder; } else { q = _num0; return _num0; } } /** Numeric integer quotient. * Equivalent to Maple's iquo as far as sign conventions are concerned. * * @return truncated quotient of a/b if both are integer, 0 otherwise. * @exception overflow_error (division by zero) if b is zero. */ const numeric iquo(const numeric &a, const numeric &b) { if (b.is_zero()) throw std::overflow_error("numeric::iquo(): division by zero"); if (a.is_integer() && b.is_integer()) return cln::truncate1(cln::the(a.to_cl_N()), cln::the(b.to_cl_N())); else return _num0; } /** Numeric integer quotient. * Equivalent to Maple's iquo(a,b,'r') it obeyes the relation * r == a - iquo(a,b,r)*b. * * @return truncated quotient of a/b and remainder stored in r if both are * integer, 0 otherwise. * @exception overflow_error (division by zero) if b is zero. */ const numeric iquo(const numeric &a, const numeric &b, numeric &r) { if (b.is_zero()) throw std::overflow_error("numeric::iquo(): division by zero"); if (a.is_integer() && b.is_integer()) { const cln::cl_I_div_t rem_quo = cln::truncate2(cln::the(a.to_cl_N()), cln::the(b.to_cl_N())); r = rem_quo.remainder; return rem_quo.quotient; } else { r = _num0; return _num0; } } /** Greatest Common Divisor. * * @return The GCD of two numbers if both are integer, a numerical 1 * if they are not. */ const numeric gcd(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) return cln::gcd(cln::the(a.to_cl_N()), cln::the(b.to_cl_N())); else return _num1; } /** Least Common Multiple. * * @return The LCM of two numbers if both are integer, the product of those * two numbers if they are not. */ const numeric lcm(const numeric &a, const numeric &b) { if (a.is_integer() && b.is_integer()) return cln::lcm(cln::the(a.to_cl_N()), cln::the(b.to_cl_N())); else return a.mul(b); } /** Numeric square root. * If possible, sqrt(x) should respect squares of exact numbers, i.e. sqrt(4) * should return integer 2. * * @param x numeric argument * @return square root of x. Branch cut along negative real axis, the negative * real axis itself where imag(x)==0 and real(x)<0 belongs to the upper part * where imag(x)>0. */ const numeric sqrt(const numeric &x) { return cln::sqrt(x.to_cl_N()); } /** Integer numeric square root. */ const numeric isqrt(const numeric &x) { if (x.is_integer()) { cln::cl_I root; cln::isqrt(cln::the(x.to_cl_N()), &root); return root; } else return _num0; } /** Floating point evaluation of Archimedes' constant Pi. */ ex PiEvalf() { return numeric(cln::pi(cln::default_float_format)); } /** Floating point evaluation of Euler's constant gamma. */ ex EulerEvalf() { return numeric(cln::eulerconst(cln::default_float_format)); } /** Floating point evaluation of Catalan's constant. */ ex CatalanEvalf() { return numeric(cln::catalanconst(cln::default_float_format)); } /** _numeric_digits default ctor, checking for singleton invariance. */ _numeric_digits::_numeric_digits() : digits(17) { // It initializes to 17 digits, because in CLN float_format(17) turns out // to be 61 (<64) while float_format(18)=65. The reason is we want to // have a cl_LF instead of cl_SF, cl_FF or cl_DF. if (too_late) throw(std::runtime_error("I told you not to do instantiate me!")); too_late = true; cln::default_float_format = cln::float_format(17); } /** Assign a native long to global Digits object. */ _numeric_digits& _numeric_digits::operator=(long prec) { digits = prec; cln::default_float_format = cln::float_format(prec); return *this; } /** Convert global Digits object to native type long. */ _numeric_digits::operator long() { // BTW, this is approx. unsigned(cln::default_float_format*0.301)-1 return (long)digits; } /** Append global Digits object to ostream. */ void _numeric_digits::print(std::ostream &os) const { os << digits; } std::ostream& operator<<(std::ostream &os, const _numeric_digits &e) { e.print(os); return os; } ////////// // static member variables ////////// // private bool _numeric_digits::too_late = false; /** Accuracy in decimal digits. Only object of this type! Can be set using * assignment from C++ unsigned ints and evaluated like any built-in type. */ _numeric_digits Digits; } // namespace GiNaC