/** @file mul.cpp * * Implementation of GiNaC's products of expressions. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "mul.h" #include "add.h" #include "power.h" #include "archive.h" #include "debugmsg.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(mul, expairseq) ////////// // default ctor, dctor, copy ctor assignment operator and helpers ////////// mul::mul() { debugmsg("mul default ctor",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_mul; } DEFAULT_COPY(mul) DEFAULT_DESTROY(mul) ////////// // other ctors ////////// // public mul::mul(const ex & lh, const ex & rh) { debugmsg("mul ctor from ex,ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_mul; overall_coeff = _ex1(); construct_from_2_ex(lh,rh); GINAC_ASSERT(is_canonical()); } mul::mul(const exvector & v) { debugmsg("mul ctor from exvector",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_mul; overall_coeff = _ex1(); construct_from_exvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(const epvector & v) { debugmsg("mul ctor from epvector",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_mul; overall_coeff = _ex1(); construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(const epvector & v, const ex & oc) { debugmsg("mul ctor from epvector,ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_mul; overall_coeff = oc; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(epvector * vp, const ex & oc) { debugmsg("mul ctor from epvector *,ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_mul; GINAC_ASSERT(vp!=0); overall_coeff = oc; construct_from_epvector(*vp); delete vp; GINAC_ASSERT(is_canonical()); } mul::mul(const ex & lh, const ex & mh, const ex & rh) { debugmsg("mul ctor from ex,ex,ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_mul; exvector factors; factors.reserve(3); factors.push_back(lh); factors.push_back(mh); factors.push_back(rh); overall_coeff = _ex1(); construct_from_exvector(factors); GINAC_ASSERT(is_canonical()); } ////////// // archiving ////////// DEFAULT_ARCHIVING(mul) ////////// // functions overriding virtual functions from bases classes ////////// // public void mul::print(const print_context & c, unsigned level) const { debugmsg("mul print", LOGLEVEL_PRINT); if (is_of_type(c, print_tree)) { inherited::print(c, level); } else if (is_of_type(c, print_csrc)) { if (precedence() <= level) c.s << "("; if (!overall_coeff.is_equal(_ex1())) { overall_coeff.bp->print(c, precedence()); c.s << "*"; } // Print arguments, separated by "*" or "/" epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { // If the first argument is a negative integer power, it gets printed as "1.0/" if (it == seq.begin() && ex_to_numeric(it->coeff).is_integer() && it->coeff.compare(_num0()) < 0) { if (is_of_type(c, print_csrc_cl_N)) c.s << "recip("; else c.s << "1.0/"; } // If the exponent is 1 or -1, it is left out if (it->coeff.compare(_ex1()) == 0 || it->coeff.compare(_num_1()) == 0) it->rest.print(c, precedence()); else { // Outer parens around ex needed for broken gcc-2.95 parser: (ex(power(it->rest, abs(ex_to_numeric(it->coeff))))).print(c, level); } // Separator is "/" for negative integer powers, "*" otherwise ++it; if (it != itend) { if (ex_to_numeric(it->coeff).is_integer() && it->coeff.compare(_num0()) < 0) c.s << "/"; else c.s << "*"; } } if (precedence() <= level) c.s << ")"; } else { if (precedence() <= level) { if (is_of_type(c, print_latex)) c.s << "{("; else c.s << "("; } bool first = true; // First print the overall numeric coefficient numeric coeff = ex_to_numeric(overall_coeff); if (coeff.csgn() == -1) c.s << '-'; if (!coeff.is_equal(_num1()) && !coeff.is_equal(_num_1())) { if (coeff.is_rational()) { if (coeff.is_negative()) (-coeff).print(c); else coeff.print(c); } else { if (coeff.csgn() == -1) (-coeff).print(c, precedence()); else coeff.print(c, precedence()); } if (is_of_type(c, print_latex)) c.s << ' '; else c.s << '*'; } // Then proceed with the remaining factors epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { if (!first) { if (is_of_type(c, print_latex)) c.s << ' '; else c.s << '*'; } else { first = false; } recombine_pair_to_ex(*it).print(c, precedence()); it++; } if (precedence() <= level) { if (is_of_type(c, print_latex)) c.s << ")}"; else c.s << ")"; } } } bool mul::info(unsigned inf) const { switch (inf) { case info_flags::polynomial: case info_flags::integer_polynomial: case info_flags::cinteger_polynomial: case info_flags::rational_polynomial: case info_flags::crational_polynomial: case info_flags::rational_function: { for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { if (!(recombine_pair_to_ex(*i).info(inf))) return false; } return overall_coeff.info(inf); } case info_flags::algebraic: { for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { if ((recombine_pair_to_ex(*i).info(inf))) return true; } return false; } } return inherited::info(inf); } int mul::degree(const ex & s) const { int deg_sum = 0; for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { if (ex_to_numeric(cit->coeff).is_integer()) deg_sum+=cit->rest.degree(s) * ex_to_numeric(cit->coeff).to_int(); } return deg_sum; } int mul::ldegree(const ex & s) const { int deg_sum = 0; for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { if (ex_to_numeric(cit->coeff).is_integer()) deg_sum+=cit->rest.ldegree(s) * ex_to_numeric(cit->coeff).to_int(); } return deg_sum; } ex mul::coeff(const ex & s, int n) const { exvector coeffseq; coeffseq.reserve(seq.size()+1); if (n==0) { // product of individual coeffs // if a non-zero power of s is found, the resulting product will be 0 epvector::const_iterator it = seq.begin(); while (it!=seq.end()) { coeffseq.push_back(recombine_pair_to_ex(*it).coeff(s,n)); ++it; } coeffseq.push_back(overall_coeff); return (new mul(coeffseq))->setflag(status_flags::dynallocated); } epvector::const_iterator it=seq.begin(); bool coeff_found = 0; while (it!=seq.end()) { ex t = recombine_pair_to_ex(*it); ex c = t.coeff(s,n); if (!c.is_zero()) { coeffseq.push_back(c); coeff_found = 1; } else { coeffseq.push_back(t); } ++it; } if (coeff_found) { coeffseq.push_back(overall_coeff); return (new mul(coeffseq))->setflag(status_flags::dynallocated); } return _ex0(); } ex mul::eval(int level) const { // simplifications *(...,x;0) -> 0 // *(+(x,y,...);c) -> *(+(*(x,c),*(y,c),...)) (c numeric()) // *(x;1) -> x // *(;c) -> c debugmsg("mul eval",LOGLEVEL_MEMBER_FUNCTION); epvector * evaled_seqp = evalchildren(level); if (evaled_seqp!=0) { // do more evaluation later return (new mul(evaled_seqp,overall_coeff))-> setflag(status_flags::dynallocated); } #ifdef DO_GINAC_ASSERT for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { GINAC_ASSERT((!is_ex_exactly_of_type((*cit).rest,mul)) || (!(ex_to_numeric((*cit).coeff).is_integer()))); GINAC_ASSERT(!(cit->is_canonical_numeric())); if (is_ex_exactly_of_type(recombine_pair_to_ex(*cit),numeric)) print(print_tree(std::cerr)); GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*cit),numeric)); /* for paranoia */ expair p = split_ex_to_pair(recombine_pair_to_ex(*cit)); GINAC_ASSERT(p.rest.is_equal((*cit).rest)); GINAC_ASSERT(p.coeff.is_equal((*cit).coeff)); /* end paranoia */ } #endif // def DO_GINAC_ASSERT if (flags & status_flags::evaluated) { GINAC_ASSERT(seq.size()>0); GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1())); return *this; } int seq_size = seq.size(); if (overall_coeff.is_equal(_ex0())) { // *(...,x;0) -> 0 return _ex0(); } else if (seq_size==0) { // *(;c) -> c return overall_coeff; } else if (seq_size==1 && overall_coeff.is_equal(_ex1())) { // *(x;1) -> x return recombine_pair_to_ex(*(seq.begin())); } else if ((seq_size==1) && is_ex_exactly_of_type((*seq.begin()).rest,add) && ex_to_numeric((*seq.begin()).coeff).is_equal(_num1())) { // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +()) const add & addref = ex_to_add((*seq.begin()).rest); epvector distrseq; distrseq.reserve(addref.seq.size()); for (epvector::const_iterator cit=addref.seq.begin(); cit!=addref.seq.end(); ++cit) { distrseq.push_back(addref.combine_pair_with_coeff_to_pair(*cit, overall_coeff)); } return (new add(distrseq, ex_to_numeric(addref.overall_coeff). mul_dyn(ex_to_numeric(overall_coeff)))) ->setflag(status_flags::dynallocated | status_flags::evaluated); } return this->hold(); } ex mul::evalf(int level) const { if (level==1) return mul(seq,overall_coeff); if (level==-max_recursion_level) throw(std::runtime_error("max recursion level reached")); epvector s; s.reserve(seq.size()); --level; for (epvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { s.push_back(combine_ex_with_coeff_to_pair((*it).rest.evalf(level), (*it).coeff)); } return mul(s,overall_coeff.evalf(level)); } ex mul::simplify_ncmul(const exvector & v) const { if (seq.size()==0) { return inherited::simplify_ncmul(v); } // Find first noncommutative element and call its simplify_ncmul() for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { if (cit->rest.return_type() == return_types::noncommutative) return cit->rest.simplify_ncmul(v); } return inherited::simplify_ncmul(v); } // protected /** Implementation of ex::diff() for a product. It applies the product rule. * @see ex::diff */ ex mul::derivative(const symbol & s) const { exvector addseq; addseq.reserve(seq.size()); // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) for (unsigned i=0; i!=seq.size(); ++i) { epvector mulseq = seq; mulseq[i] = split_ex_to_pair(power(seq[i].rest,seq[i].coeff - _ex1()) * seq[i].rest.diff(s)); addseq.push_back((new mul(mulseq,overall_coeff*seq[i].coeff))->setflag(status_flags::dynallocated)); } return (new add(addseq))->setflag(status_flags::dynallocated); } int mul::compare_same_type(const basic & other) const { return inherited::compare_same_type(other); } bool mul::is_equal_same_type(const basic & other) const { return inherited::is_equal_same_type(other); } unsigned mul::return_type(void) const { if (seq.size()==0) { // mul without factors: should not happen, but commutes return return_types::commutative; } bool all_commutative = 1; unsigned rt; epvector::const_iterator cit_noncommutative_element; // point to first found nc element for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { rt=(*cit).rest.return_type(); if (rt==return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc if ((rt==return_types::noncommutative)&&(all_commutative)) { // first nc element found, remember position cit_noncommutative_element = cit; all_commutative = 0; } if ((rt==return_types::noncommutative)&&(!all_commutative)) { // another nc element found, compare type_infos if ((*cit_noncommutative_element).rest.return_type_tinfo()!=(*cit).rest.return_type_tinfo()) { // diffent types -> mul is ncc return return_types::noncommutative_composite; } } } // all factors checked return all_commutative ? return_types::commutative : return_types::noncommutative; } unsigned mul::return_type_tinfo(void) const { if (seq.size()==0) return tinfo_key; // mul without factors: should not happen // return type_info of first noncommutative element for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { if ((*cit).rest.return_type()==return_types::noncommutative) return (*cit).rest.return_type_tinfo(); } // no noncommutative element found, should not happen return tinfo_key; } ex mul::thisexpairseq(const epvector & v, const ex & oc) const { return (new mul(v,oc))->setflag(status_flags::dynallocated); } ex mul::thisexpairseq(epvector * vp, const ex & oc) const { return (new mul(vp,oc))->setflag(status_flags::dynallocated); } expair mul::split_ex_to_pair(const ex & e) const { if (is_ex_exactly_of_type(e,power)) { const power & powerref = ex_to_power(e); if (is_ex_exactly_of_type(powerref.exponent,numeric)) return expair(powerref.basis,powerref.exponent); } return expair(e,_ex1()); } expair mul::combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const { // to avoid duplication of power simplification rules, // we create a temporary power object // otherwise it would be hard to correctly simplify // expression like (4^(1/3))^(3/2) if (are_ex_trivially_equal(c,_ex1())) return split_ex_to_pair(e); return split_ex_to_pair(power(e,c)); } expair mul::combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const { // to avoid duplication of power simplification rules, // we create a temporary power object // otherwise it would be hard to correctly simplify // expression like (4^(1/3))^(3/2) if (are_ex_trivially_equal(c,_ex1())) return p; return split_ex_to_pair(power(recombine_pair_to_ex(p),c)); } ex mul::recombine_pair_to_ex(const expair & p) const { if (ex_to_numeric(p.coeff).is_equal(_num1())) return p.rest; else return power(p.rest,p.coeff); } bool mul::expair_needs_further_processing(epp it) { if (is_ex_exactly_of_type((*it).rest,mul) && ex_to_numeric((*it).coeff).is_integer()) { // combined pair is product with integer power -> expand it *it = split_ex_to_pair(recombine_pair_to_ex(*it)); return true; } if (is_ex_exactly_of_type((*it).rest,numeric)) { expair ep=split_ex_to_pair(recombine_pair_to_ex(*it)); if (!ep.is_equal(*it)) { // combined pair is a numeric power which can be simplified *it = ep; return true; } if (ex_to_numeric((*it).coeff).is_equal(_num1())) { // combined pair has coeff 1 and must be moved to the end return true; } } return false; } ex mul::default_overall_coeff(void) const { return _ex1(); } void mul::combine_overall_coeff(const ex & c) { GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); GINAC_ASSERT(is_ex_exactly_of_type(c,numeric)); overall_coeff = ex_to_numeric(overall_coeff).mul_dyn(ex_to_numeric(c)); } void mul::combine_overall_coeff(const ex & c1, const ex & c2) { GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); GINAC_ASSERT(is_ex_exactly_of_type(c1,numeric)); GINAC_ASSERT(is_ex_exactly_of_type(c2,numeric)); overall_coeff = ex_to_numeric(overall_coeff).mul_dyn(ex_to_numeric(c1).power(ex_to_numeric(c2))); } bool mul::can_make_flat(const expair & p) const { GINAC_ASSERT(is_ex_exactly_of_type(p.coeff,numeric)); // this assertion will probably fail somewhere // it would require a more careful make_flat, obeying the power laws // probably should return true only if p.coeff is integer return ex_to_numeric(p.coeff).is_equal(_num1()); } ex mul::expand(unsigned options) const { if (flags & status_flags::expanded) return *this; exvector sub_expanded_seq; epvector * expanded_seqp = expandchildren(options); const epvector & expanded_seq = expanded_seqp==0 ? seq : *expanded_seqp; int number_of_adds = 0; epvector non_adds; non_adds.reserve(expanded_seq.size()); epvector::const_iterator cit = expanded_seq.begin(); epvector::const_iterator last = expanded_seq.end(); ex last_expanded = _ex1(); while (cit!=last) { if (is_ex_exactly_of_type((*cit).rest,add) && ((*cit).coeff.is_equal(_ex1()))) { ++number_of_adds; if (is_ex_exactly_of_type(last_expanded,add)) { // expand adds const add & add1 = ex_to_add(last_expanded); const add & add2 = ex_to_add((*cit).rest); int n1 = add1.nops(); int n2 = add2.nops(); exvector distrseq; distrseq.reserve(n1*n2); for (int i1=0; i1setflag(status_flags::dynallocated | status_flags::expanded); } else { non_adds.push_back(split_ex_to_pair(last_expanded)); last_expanded = (*cit).rest; } } else { non_adds.push_back(*cit); } ++cit; } if (expanded_seqp) delete expanded_seqp; if (is_ex_exactly_of_type(last_expanded,add)) { add const & finaladd = ex_to_add(last_expanded); exvector distrseq; int n = finaladd.nops(); distrseq.reserve(n); for (int i=0; isetflag(status_flags::dynallocated | status_flags::expanded)); } return ((new add(distrseq))-> setflag(status_flags::dynallocated | status_flags::expanded)); } non_adds.push_back(split_ex_to_pair(last_expanded)); return (new mul(non_adds,overall_coeff))-> setflag(status_flags::dynallocated | status_flags::expanded); } ////////// // new virtual functions which can be overridden by derived classes ////////// // none ////////// // non-virtual functions in this class ////////// /** Member-wise expand the expairs representing this sequence. This must be * overridden from expairseq::expandchildren() and done iteratively in order * to allow for early cancallations and thus safe memory. * * @see mul::expand() * @return pointer to epvector containing expanded representation or zero * pointer, if sequence is unchanged. */ epvector * mul::expandchildren(unsigned options) const { epvector::const_iterator last = seq.end(); epvector::const_iterator cit = seq.begin(); while (cit!=last) { const ex & factor = recombine_pair_to_ex(*cit); const ex & expanded_factor = factor.expand(options); if (!are_ex_trivially_equal(factor,expanded_factor)) { // something changed, copy seq, eval and return it epvector *s = new epvector; s->reserve(seq.size()); // copy parts of seq which are known not to have changed epvector::const_iterator cit2 = seq.begin(); while (cit2!=cit) { s->push_back(*cit2); ++cit2; } // copy first changed element s->push_back(split_ex_to_pair(expanded_factor)); ++cit2; // copy rest while (cit2!=last) { s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); ++cit2; } return s; } ++cit; } return 0; // nothing has changed } } // namespace GiNaC