/** @file mul.cpp * * Implementation of GiNaC's products of expressions. */ /* * GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "mul.h" #include "add.h" #include "power.h" #include "operators.h" #include "matrix.h" #include "indexed.h" #include "lst.h" #include "archive.h" #include "utils.h" #include "symbol.h" #include "compiler.h" #include #include #include #include namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mul, expairseq, print_func(&mul::do_print). print_func(&mul::do_print_latex). print_func(&mul::do_print_csrc). print_func(&mul::do_print_tree). print_func(&mul::do_print_python_repr)) ////////// // default constructor ////////// mul::mul() { } ////////// // other constructors ////////// // public mul::mul(const ex & lh, const ex & rh) { overall_coeff = _ex1; construct_from_2_ex(lh,rh); GINAC_ASSERT(is_canonical()); } mul::mul(const exvector & v) { overall_coeff = _ex1; construct_from_exvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(const epvector & v) { overall_coeff = _ex1; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(const epvector & v, const ex & oc, bool do_index_renaming) { overall_coeff = oc; construct_from_epvector(v, do_index_renaming); GINAC_ASSERT(is_canonical()); } mul::mul(std::auto_ptr vp, const ex & oc, bool do_index_renaming) { GINAC_ASSERT(vp.get()!=0); overall_coeff = oc; construct_from_epvector(*vp, do_index_renaming); GINAC_ASSERT(is_canonical()); } mul::mul(const ex & lh, const ex & mh, const ex & rh) { exvector factors; factors.reserve(3); factors.push_back(lh); factors.push_back(mh); factors.push_back(rh); overall_coeff = _ex1; construct_from_exvector(factors); GINAC_ASSERT(is_canonical()); } ////////// // archiving ////////// ////////// // functions overriding virtual functions from base classes ////////// void mul::print_overall_coeff(const print_context & c, const char *mul_sym) const { const numeric &coeff = ex_to(overall_coeff); if (coeff.csgn() == -1) c.s << '-'; if (!coeff.is_equal(*_num1_p) && !coeff.is_equal(*_num_1_p)) { if (coeff.is_rational()) { if (coeff.is_negative()) (-coeff).print(c); else coeff.print(c); } else { if (coeff.csgn() == -1) (-coeff).print(c, precedence()); else coeff.print(c, precedence()); } c.s << mul_sym; } } void mul::do_print(const print_context & c, unsigned level) const { if (precedence() <= level) c.s << '('; print_overall_coeff(c, "*"); epvector::const_iterator it = seq.begin(), itend = seq.end(); bool first = true; while (it != itend) { if (!first) c.s << '*'; else first = false; recombine_pair_to_ex(*it).print(c, precedence()); ++it; } if (precedence() <= level) c.s << ')'; } void mul::do_print_latex(const print_latex & c, unsigned level) const { if (precedence() <= level) c.s << "{("; print_overall_coeff(c, " "); // Separate factors into those with negative numeric exponent // and all others epvector::const_iterator it = seq.begin(), itend = seq.end(); exvector neg_powers, others; while (it != itend) { GINAC_ASSERT(is_exactly_a(it->coeff)); if (ex_to(it->coeff).is_negative()) neg_powers.push_back(recombine_pair_to_ex(expair(it->rest, -(it->coeff)))); else others.push_back(recombine_pair_to_ex(*it)); ++it; } if (!neg_powers.empty()) { // Factors with negative exponent are printed as a fraction c.s << "\\frac{"; mul(others).eval().print(c); c.s << "}{"; mul(neg_powers).eval().print(c); c.s << "}"; } else { // All other factors are printed in the ordinary way exvector::const_iterator vit = others.begin(), vitend = others.end(); while (vit != vitend) { c.s << ' '; vit->print(c, precedence()); ++vit; } } if (precedence() <= level) c.s << ")}"; } void mul::do_print_csrc(const print_csrc & c, unsigned level) const { if (precedence() <= level) c.s << "("; if (!overall_coeff.is_equal(_ex1)) { if (overall_coeff.is_equal(_ex_1)) c.s << "-"; else { overall_coeff.print(c, precedence()); c.s << "*"; } } // Print arguments, separated by "*" or "/" epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { // If the first argument is a negative integer power, it gets printed as "1.0/" bool needclosingparenthesis = false; if (it == seq.begin() && it->coeff.info(info_flags::negint)) { if (is_a(c)) { c.s << "recip("; needclosingparenthesis = true; } else c.s << "1.0/"; } // If the exponent is 1 or -1, it is left out if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1)) it->rest.print(c, precedence()); else if (it->coeff.info(info_flags::negint)) // Outer parens around ex needed for broken GCC parser: (ex(power(it->rest, -ex_to(it->coeff)))).print(c, level); else // Outer parens around ex needed for broken GCC parser: (ex(power(it->rest, ex_to(it->coeff)))).print(c, level); if (needclosingparenthesis) c.s << ")"; // Separator is "/" for negative integer powers, "*" otherwise ++it; if (it != itend) { if (it->coeff.info(info_flags::negint)) c.s << "/"; else c.s << "*"; } } if (precedence() <= level) c.s << ")"; } void mul::do_print_python_repr(const print_python_repr & c, unsigned level) const { c.s << class_name() << '('; op(0).print(c); for (size_t i=1; i(i->coeff).is_integer()) deg_sum += recombine_pair_to_ex(*i).degree(s); else { if (i->rest.has(s)) throw std::runtime_error("mul::degree() undefined degree because of non-integer exponent"); } ++i; } return deg_sum; } int mul::ldegree(const ex & s) const { // Sum up degrees of factors int deg_sum = 0; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (ex_to(i->coeff).is_integer()) deg_sum += recombine_pair_to_ex(*i).ldegree(s); else { if (i->rest.has(s)) throw std::runtime_error("mul::ldegree() undefined degree because of non-integer exponent"); } ++i; } return deg_sum; } ex mul::coeff(const ex & s, int n) const { exvector coeffseq; coeffseq.reserve(seq.size()+1); if (n==0) { // product of individual coeffs // if a non-zero power of s is found, the resulting product will be 0 epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { coeffseq.push_back(recombine_pair_to_ex(*i).coeff(s,n)); ++i; } coeffseq.push_back(overall_coeff); return (new mul(coeffseq))->setflag(status_flags::dynallocated); } epvector::const_iterator i = seq.begin(), end = seq.end(); bool coeff_found = false; while (i != end) { ex t = recombine_pair_to_ex(*i); ex c = t.coeff(s, n); if (!c.is_zero()) { coeffseq.push_back(c); coeff_found = 1; } else { coeffseq.push_back(t); } ++i; } if (coeff_found) { coeffseq.push_back(overall_coeff); return (new mul(coeffseq))->setflag(status_flags::dynallocated); } return _ex0; } /** Perform automatic term rewriting rules in this class. In the following * x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2... * stand for such expressions that contain a plain number. * - *(...,x;0) -> 0 * - *(+(x1,x2,...);c) -> *(+(*(x1,c),*(x2,c),...)) * - *(x;1) -> x * - *(;c) -> c * * @param level cut-off in recursive evaluation */ ex mul::eval(int level) const { std::auto_ptr evaled_seqp = evalchildren(level); if (evaled_seqp.get()) { // do more evaluation later return (new mul(evaled_seqp, overall_coeff))-> setflag(status_flags::dynallocated); } #ifdef DO_GINAC_ASSERT epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { GINAC_ASSERT((!is_exactly_a(i->rest)) || (!(ex_to(i->coeff).is_integer()))); GINAC_ASSERT(!(i->is_canonical_numeric())); if (is_exactly_a(recombine_pair_to_ex(*i))) print(print_tree(std::cerr)); GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*i))); /* for paranoia */ expair p = split_ex_to_pair(recombine_pair_to_ex(*i)); GINAC_ASSERT(p.rest.is_equal(i->rest)); GINAC_ASSERT(p.coeff.is_equal(i->coeff)); /* end paranoia */ ++i; } #endif // def DO_GINAC_ASSERT if (flags & status_flags::evaluated) { GINAC_ASSERT(seq.size()>0); GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1)); return *this; } size_t seq_size = seq.size(); if (overall_coeff.is_zero()) { // *(...,x;0) -> 0 return _ex0; } else if (seq_size==0) { // *(;c) -> c return overall_coeff; } else if (seq_size==1 && overall_coeff.is_equal(_ex1)) { // *(x;1) -> x return recombine_pair_to_ex(*(seq.begin())); } else if ((seq_size==1) && is_exactly_a((*seq.begin()).rest) && ex_to((*seq.begin()).coeff).is_equal(*_num1_p)) { // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +()) const add & addref = ex_to((*seq.begin()).rest); std::auto_ptr distrseq(new epvector); distrseq->reserve(addref.seq.size()); epvector::const_iterator i = addref.seq.begin(), end = addref.seq.end(); while (i != end) { distrseq->push_back(addref.combine_pair_with_coeff_to_pair(*i, overall_coeff)); ++i; } return (new add(distrseq, ex_to(addref.overall_coeff). mul_dyn(ex_to(overall_coeff))) )->setflag(status_flags::dynallocated | status_flags::evaluated); } else if ((seq_size >= 2) && (! (flags & status_flags::expanded))) { // Strip the content and the unit part from each term. Thus // things like (-x+a)*(3*x-3*a) automagically turn into - 3*(x-a)2 epvector::const_iterator last = seq.end(); epvector::const_iterator i = seq.begin(); epvector::const_iterator j = seq.begin(); std::auto_ptr s(new epvector); numeric oc = *_num1_p; bool something_changed = false; while (i!=last) { if (likely(! (is_a(i->rest) && i->coeff.is_equal(_ex1)))) { // power::eval has such a rule, no need to handle powers here ++i; continue; } // XXX: What is the best way to check if the polynomial is a primitive? numeric c = i->rest.integer_content(); const numeric lead_coeff = ex_to(ex_to(i->rest).seq.begin()->coeff).div(c); const bool canonicalizable = lead_coeff.is_integer(); // XXX: The main variable is chosen in a random way, so this code // does NOT transform the term into the canonical form (thus, in some // very unlucky event it can even loop forever). Hopefully the main // variable will be the same for all terms in *this const bool unit_normal = lead_coeff.is_pos_integer(); if (likely((c == *_num1_p) && ((! canonicalizable) || unit_normal))) { ++i; continue; } if (! something_changed) { s->reserve(seq_size); something_changed = true; } while ((j!=i) && (j!=last)) { s->push_back(*j); ++j; } if (! unit_normal) c = c.mul(*_num_1_p); oc = oc.mul(c); // divide add by the number in place to save at least 2 .eval() calls const add& addref = ex_to(i->rest); add* primitive = new add(addref); primitive->setflag(status_flags::dynallocated); primitive->clearflag(status_flags::hash_calculated); primitive->overall_coeff = ex_to(primitive->overall_coeff).div_dyn(c); for (epvector::iterator ai = primitive->seq.begin(); ai != primitive->seq.end(); ++ai) ai->coeff = ex_to(ai->coeff).div_dyn(c); s->push_back(expair(*primitive, _ex1)); ++i; ++j; } if (something_changed) { while (j!=last) { s->push_back(*j); ++j; } return (new mul(s, ex_to(overall_coeff).mul_dyn(oc)) )->setflag(status_flags::dynallocated); } } return this->hold(); } ex mul::evalf(int level) const { if (level==1) return mul(seq,overall_coeff); if (level==-max_recursion_level) throw(std::runtime_error("max recursion level reached")); std::auto_ptr s(new epvector); s->reserve(seq.size()); --level; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { s->push_back(combine_ex_with_coeff_to_pair(i->rest.evalf(level), i->coeff)); ++i; } return mul(s, overall_coeff.evalf(level)); } void mul::find_real_imag(ex & rp, ex & ip) const { rp = overall_coeff.real_part(); ip = overall_coeff.imag_part(); for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { ex factor = recombine_pair_to_ex(*i); ex new_rp = factor.real_part(); ex new_ip = factor.imag_part(); if(new_ip.is_zero()) { rp *= new_rp; ip *= new_rp; } else { ex temp = rp*new_rp - ip*new_ip; ip = ip*new_rp + rp*new_ip; rp = temp; } } rp = rp.expand(); ip = ip.expand(); } ex mul::real_part() const { ex rp, ip; find_real_imag(rp, ip); return rp; } ex mul::imag_part() const { ex rp, ip; find_real_imag(rp, ip); return ip; } ex mul::evalm() const { // numeric*matrix if (seq.size() == 1 && seq[0].coeff.is_equal(_ex1) && is_a(seq[0].rest)) return ex_to(seq[0].rest).mul(ex_to(overall_coeff)); // Evaluate children first, look whether there are any matrices at all // (there can be either no matrices or one matrix; if there were more // than one matrix, it would be a non-commutative product) std::auto_ptr s(new epvector); s->reserve(seq.size()); bool have_matrix = false; epvector::iterator the_matrix; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { const ex &m = recombine_pair_to_ex(*i).evalm(); s->push_back(split_ex_to_pair(m)); if (is_a(m)) { have_matrix = true; the_matrix = s->end() - 1; } ++i; } if (have_matrix) { // The product contained a matrix. We will multiply all other factors // into that matrix. matrix m = ex_to(the_matrix->rest); s->erase(the_matrix); ex scalar = (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); return m.mul_scalar(scalar); } else return (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); } ex mul::eval_ncmul(const exvector & v) const { if (seq.empty()) return inherited::eval_ncmul(v); // Find first noncommutative element and call its eval_ncmul() epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (i->rest.return_type() == return_types::noncommutative) return i->rest.eval_ncmul(v); ++i; } return inherited::eval_ncmul(v); } bool tryfactsubs(const ex & origfactor, const ex & patternfactor, int & nummatches, exmap& repls) { ex origbase; int origexponent; int origexpsign; if (is_exactly_a(origfactor) && origfactor.op(1).info(info_flags::integer)) { origbase = origfactor.op(0); int expon = ex_to(origfactor.op(1)).to_int(); origexponent = expon > 0 ? expon : -expon; origexpsign = expon > 0 ? 1 : -1; } else { origbase = origfactor; origexponent = 1; origexpsign = 1; } ex patternbase; int patternexponent; int patternexpsign; if (is_exactly_a(patternfactor) && patternfactor.op(1).info(info_flags::integer)) { patternbase = patternfactor.op(0); int expon = ex_to(patternfactor.op(1)).to_int(); patternexponent = expon > 0 ? expon : -expon; patternexpsign = expon > 0 ? 1 : -1; } else { patternbase = patternfactor; patternexponent = 1; patternexpsign = 1; } exmap saverepls = repls; if (origexponent < patternexponent || origexpsign != patternexpsign || !origbase.match(patternbase,saverepls)) return false; repls = saverepls; int newnummatches = origexponent / patternexponent; if (newnummatches < nummatches) nummatches = newnummatches; return true; } /** Checks wheter e matches to the pattern pat and the (possibly to be updated) * list of replacements repls. This matching is in the sense of algebraic * substitutions. Matching starts with pat.op(factor) of the pattern because * the factors before this one have already been matched. The (possibly * updated) number of matches is in nummatches. subsed[i] is true for factors * that already have been replaced by previous substitutions and matched[i] * is true for factors that have been matched by the current match. */ bool algebraic_match_mul_with_mul(const mul &e, const ex &pat, exmap& repls, int factor, int &nummatches, const std::vector &subsed, std::vector &matched) { GINAC_ASSERT(subsed.size() == e.nops()); GINAC_ASSERT(matched.size() == e.nops()); if (factor == (int)pat.nops()) return true; for (size_t i=0; i(pattern)) { exmap repls; int nummatches = std::numeric_limits::max(); std::vector subsed(nops(), false); std::vector matched(nops(), false); if(algebraic_match_mul_with_mul(*this, pattern, repls, 0, nummatches, subsed, matched)) return true; } return basic::has(pattern, options); } ex mul::algebraic_subs_mul(const exmap & m, unsigned options) const { std::vector subsed(nops(), false); ex divide_by = 1; ex multiply_by = 1; for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) { if (is_exactly_a(it->first)) { retry1: int nummatches = std::numeric_limits::max(); std::vector currsubsed(nops(), false); exmap repls; if(!algebraic_match_mul_with_mul(*this, it->first, repls, 0, nummatches, subsed, currsubsed)) continue; for (size_t j=0; jfirst.subs(repls, subs_options::no_pattern); divide_by *= power(subsed_pattern, nummatches); ex subsed_result = it->second.subs(repls, subs_options::no_pattern); multiply_by *= power(subsed_result, nummatches); goto retry1; } else { for (size_t j=0; jnops(); j++) { int nummatches = std::numeric_limits::max(); exmap repls; if (!subsed[j] && tryfactsubs(op(j), it->first, nummatches, repls)){ subsed[j] = true; ex subsed_pattern = it->first.subs(repls, subs_options::no_pattern); divide_by *= power(subsed_pattern, nummatches); ex subsed_result = it->second.subs(repls, subs_options::no_pattern); multiply_by *= power(subsed_result, nummatches); } } } } bool subsfound = false; for (size_t i=0; irest, i->coeff - _ex1) * i->rest.diff(s)); ep.swap(*i2); addseq.push_back((new mul(mulseq, overall_coeff * i->coeff))->setflag(status_flags::dynallocated)); ep.swap(*i2); ++i; ++i2; } return (new add(addseq))->setflag(status_flags::dynallocated); } int mul::compare_same_type(const basic & other) const { return inherited::compare_same_type(other); } unsigned mul::return_type() const { if (seq.empty()) { // mul without factors: should not happen, but commutates return return_types::commutative; } bool all_commutative = true; epvector::const_iterator noncommutative_element; // point to first found nc element epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { unsigned rt = i->rest.return_type(); if (rt == return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc if ((rt == return_types::noncommutative) && (all_commutative)) { // first nc element found, remember position noncommutative_element = i; all_commutative = false; } if ((rt == return_types::noncommutative) && (!all_commutative)) { // another nc element found, compare type_infos if (noncommutative_element->rest.return_type_tinfo() != i->rest.return_type_tinfo()) { // different types -> mul is ncc return return_types::noncommutative_composite; } } ++i; } // all factors checked return all_commutative ? return_types::commutative : return_types::noncommutative; } return_type_t mul::return_type_tinfo() const { if (seq.empty()) return make_return_type_t(); // mul without factors: should not happen // return type_info of first noncommutative element epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (i->rest.return_type() == return_types::noncommutative) return i->rest.return_type_tinfo(); ++i; } // no noncommutative element found, should not happen return make_return_type_t(); } ex mul::thisexpairseq(const epvector & v, const ex & oc, bool do_index_renaming) const { return (new mul(v, oc, do_index_renaming))->setflag(status_flags::dynallocated); } ex mul::thisexpairseq(std::auto_ptr vp, const ex & oc, bool do_index_renaming) const { return (new mul(vp, oc, do_index_renaming))->setflag(status_flags::dynallocated); } expair mul::split_ex_to_pair(const ex & e) const { if (is_exactly_a(e)) { const power & powerref = ex_to(e); if (is_exactly_a(powerref.exponent)) return expair(powerref.basis,powerref.exponent); } return expair(e,_ex1); } expair mul::combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const { // to avoid duplication of power simplification rules, // we create a temporary power object // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) if (c.is_equal(_ex1)) return split_ex_to_pair(e); return split_ex_to_pair(power(e,c)); } expair mul::combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const { // to avoid duplication of power simplification rules, // we create a temporary power object // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) if (c.is_equal(_ex1)) return p; return split_ex_to_pair(power(recombine_pair_to_ex(p),c)); } ex mul::recombine_pair_to_ex(const expair & p) const { if (ex_to(p.coeff).is_equal(*_num1_p)) return p.rest; else return (new power(p.rest,p.coeff))->setflag(status_flags::dynallocated); } bool mul::expair_needs_further_processing(epp it) { if (is_exactly_a(it->rest) && ex_to(it->coeff).is_integer()) { // combined pair is product with integer power -> expand it *it = split_ex_to_pair(recombine_pair_to_ex(*it)); return true; } if (is_exactly_a(it->rest)) { expair ep = split_ex_to_pair(recombine_pair_to_ex(*it)); if (!ep.is_equal(*it)) { // combined pair is a numeric power which can be simplified *it = ep; return true; } if (it->coeff.is_equal(_ex1)) { // combined pair has coeff 1 and must be moved to the end return true; } } return false; } ex mul::default_overall_coeff() const { return _ex1; } void mul::combine_overall_coeff(const ex & c) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c)); overall_coeff = ex_to(overall_coeff).mul_dyn(ex_to(c)); } void mul::combine_overall_coeff(const ex & c1, const ex & c2) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c1)); GINAC_ASSERT(is_exactly_a(c2)); overall_coeff = ex_to(overall_coeff).mul_dyn(ex_to(c1).power(ex_to(c2))); } bool mul::can_make_flat(const expair & p) const { GINAC_ASSERT(is_exactly_a(p.coeff)); // this assertion will probably fail somewhere // it would require a more careful make_flat, obeying the power laws // probably should return true only if p.coeff is integer return ex_to(p.coeff).is_equal(*_num1_p); } bool mul::can_be_further_expanded(const ex & e) { if (is_exactly_a(e)) { for (epvector::const_iterator cit = ex_to(e).seq.begin(); cit != ex_to(e).seq.end(); ++cit) { if (is_exactly_a(cit->rest) && cit->coeff.info(info_flags::posint)) return true; } } else if (is_exactly_a(e)) { if (is_exactly_a(e.op(0)) && e.op(1).info(info_flags::posint)) return true; } return false; } ex mul::expand(unsigned options) const { { // trivial case: expanding the monomial (~ 30% of all calls) epvector::const_iterator i = seq.begin(), seq_end = seq.end(); while ((i != seq.end()) && is_a(i->rest) && i->coeff.info(info_flags::integer)) ++i; if (i == seq_end) { setflag(status_flags::expanded); return *this; } } // do not rename indices if the object has no indices at all if ((!(options & expand_options::expand_rename_idx)) && this->info(info_flags::has_indices)) options |= expand_options::expand_rename_idx; const bool skip_idx_rename = !(options & expand_options::expand_rename_idx); // First, expand the children std::auto_ptr expanded_seqp = expandchildren(options); const epvector & expanded_seq = (expanded_seqp.get() ? *expanded_seqp : seq); // Now, look for all the factors that are sums and multiply each one out // with the next one that is found while collecting the factors which are // not sums ex last_expanded = _ex1; epvector non_adds; non_adds.reserve(expanded_seq.size()); for (epvector::const_iterator cit = expanded_seq.begin(); cit != expanded_seq.end(); ++cit) { if (is_exactly_a(cit->rest) && (cit->coeff.is_equal(_ex1))) { if (is_exactly_a(last_expanded)) { // Expand a product of two sums, aggressive version. // Caring for the overall coefficients in separate loops can // sometimes give a performance gain of up to 15%! const int sizedifference = ex_to(last_expanded).seq.size()-ex_to(cit->rest).seq.size(); // add2 is for the inner loop and should be the bigger of the two sums // in the presence of asymptotically good sorting: const add& add1 = (sizedifference<0 ? ex_to(last_expanded) : ex_to(cit->rest)); const add& add2 = (sizedifference<0 ? ex_to(cit->rest) : ex_to(last_expanded)); const epvector::const_iterator add1begin = add1.seq.begin(); const epvector::const_iterator add1end = add1.seq.end(); const epvector::const_iterator add2begin = add2.seq.begin(); const epvector::const_iterator add2end = add2.seq.end(); epvector distrseq; distrseq.reserve(add1.seq.size()+add2.seq.size()); // Multiply add2 with the overall coefficient of add1 and append it to distrseq: if (!add1.overall_coeff.is_zero()) { if (add1.overall_coeff.is_equal(_ex1)) distrseq.insert(distrseq.end(),add2begin,add2end); else for (epvector::const_iterator i=add2begin; i!=add2end; ++i) distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add1.overall_coeff)))); } // Multiply add1 with the overall coefficient of add2 and append it to distrseq: if (!add2.overall_coeff.is_zero()) { if (add2.overall_coeff.is_equal(_ex1)) distrseq.insert(distrseq.end(),add1begin,add1end); else for (epvector::const_iterator i=add1begin; i!=add1end; ++i) distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add2.overall_coeff)))); } // Compute the new overall coefficient and put it together: ex tmp_accu = (new add(distrseq, add1.overall_coeff*add2.overall_coeff))->setflag(status_flags::dynallocated); exvector add1_dummy_indices, add2_dummy_indices, add_indices; lst dummy_subs; if (!skip_idx_rename) { for (epvector::const_iterator i=add1begin; i!=add1end; ++i) { add_indices = get_all_dummy_indices_safely(i->rest); add1_dummy_indices.insert(add1_dummy_indices.end(), add_indices.begin(), add_indices.end()); } for (epvector::const_iterator i=add2begin; i!=add2end; ++i) { add_indices = get_all_dummy_indices_safely(i->rest); add2_dummy_indices.insert(add2_dummy_indices.end(), add_indices.begin(), add_indices.end()); } sort(add1_dummy_indices.begin(), add1_dummy_indices.end(), ex_is_less()); sort(add2_dummy_indices.begin(), add2_dummy_indices.end(), ex_is_less()); dummy_subs = rename_dummy_indices_uniquely(add1_dummy_indices, add2_dummy_indices); } // Multiply explicitly all non-numeric terms of add1 and add2: for (epvector::const_iterator i2=add2begin; i2!=add2end; ++i2) { // We really have to combine terms here in order to compactify // the result. Otherwise it would become waayy tooo bigg. numeric oc(*_num0_p); epvector distrseq2; distrseq2.reserve(add1.seq.size()); const ex i2_new = (skip_idx_rename || (dummy_subs.op(0).nops() == 0) ? i2->rest : i2->rest.subs(ex_to(dummy_subs.op(0)), ex_to(dummy_subs.op(1)), subs_options::no_pattern)); for (epvector::const_iterator i1=add1begin; i1!=add1end; ++i1) { // Don't push_back expairs which might have a rest that evaluates to a numeric, // since that would violate an invariant of expairseq: const ex rest = (new mul(i1->rest, i2_new))->setflag(status_flags::dynallocated); if (is_exactly_a(rest)) { oc += ex_to(rest).mul(ex_to(i1->coeff).mul(ex_to(i2->coeff))); } else { distrseq2.push_back(expair(rest, ex_to(i1->coeff).mul_dyn(ex_to(i2->coeff)))); } } tmp_accu += (new add(distrseq2, oc))->setflag(status_flags::dynallocated); } last_expanded = tmp_accu; } else { if (!last_expanded.is_equal(_ex1)) non_adds.push_back(split_ex_to_pair(last_expanded)); last_expanded = cit->rest; } } else { non_adds.push_back(*cit); } } // Now the only remaining thing to do is to multiply the factors which // were not sums into the "last_expanded" sum if (is_exactly_a(last_expanded)) { size_t n = last_expanded.nops(); exvector distrseq; distrseq.reserve(n); exvector va; if (! skip_idx_rename) { va = get_all_dummy_indices_safely(mul(non_adds)); sort(va.begin(), va.end(), ex_is_less()); } for (size_t i=0; isetflag(status_flags::dynallocated); if (can_be_further_expanded(term)) { distrseq.push_back(term.expand()); } else { if (options == 0) ex_to(term).setflag(status_flags::expanded); distrseq.push_back(term); } } return ((new add(distrseq))-> setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); } non_adds.push_back(split_ex_to_pair(last_expanded)); ex result = (new mul(non_adds, overall_coeff))->setflag(status_flags::dynallocated); if (can_be_further_expanded(result)) { return result.expand(); } else { if (options == 0) ex_to(result).setflag(status_flags::expanded); return result; } } ////////// // new virtual functions which can be overridden by derived classes ////////// // none ////////// // non-virtual functions in this class ////////// /** Member-wise expand the expairs representing this sequence. This must be * overridden from expairseq::expandchildren() and done iteratively in order * to allow for early cancallations and thus safe memory. * * @see mul::expand() * @return pointer to epvector containing expanded representation or zero * pointer, if sequence is unchanged. */ std::auto_ptr mul::expandchildren(unsigned options) const { const epvector::const_iterator last = seq.end(); epvector::const_iterator cit = seq.begin(); while (cit!=last) { const ex & factor = recombine_pair_to_ex(*cit); const ex & expanded_factor = factor.expand(options); if (!are_ex_trivially_equal(factor,expanded_factor)) { // something changed, copy seq, eval and return it std::auto_ptr s(new epvector); s->reserve(seq.size()); // copy parts of seq which are known not to have changed epvector::const_iterator cit2 = seq.begin(); while (cit2!=cit) { s->push_back(*cit2); ++cit2; } // copy first changed element s->push_back(split_ex_to_pair(expanded_factor)); ++cit2; // copy rest while (cit2!=last) { s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); ++cit2; } return s; } ++cit; } return std::auto_ptr(0); // nothing has changed } GINAC_BIND_UNARCHIVER(mul); } // namespace GiNaC