/** @file mul.cpp * * Implementation of GiNaC's products of expressions. */ /* * GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "mul.h" #include "add.h" #include "power.h" #include "matrix.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(mul, expairseq) ////////// // default ctor, dtor, copy ctor, assignment operator and helpers ////////// mul::mul() { tinfo_key = TINFO_mul; } DEFAULT_COPY(mul) DEFAULT_DESTROY(mul) ////////// // other ctors ////////// // public mul::mul(const ex & lh, const ex & rh) { tinfo_key = TINFO_mul; overall_coeff = _ex1; construct_from_2_ex(lh,rh); GINAC_ASSERT(is_canonical()); } mul::mul(const exvector & v) { tinfo_key = TINFO_mul; overall_coeff = _ex1; construct_from_exvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(const epvector & v) { tinfo_key = TINFO_mul; overall_coeff = _ex1; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(const epvector & v, const ex & oc) { tinfo_key = TINFO_mul; overall_coeff = oc; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(epvector * vp, const ex & oc) { tinfo_key = TINFO_mul; GINAC_ASSERT(vp!=0); overall_coeff = oc; construct_from_epvector(*vp); delete vp; GINAC_ASSERT(is_canonical()); } mul::mul(const ex & lh, const ex & mh, const ex & rh) { tinfo_key = TINFO_mul; exvector factors; factors.reserve(3); factors.push_back(lh); factors.push_back(mh); factors.push_back(rh); overall_coeff = _ex1; construct_from_exvector(factors); GINAC_ASSERT(is_canonical()); } ////////// // archiving ////////// DEFAULT_ARCHIVING(mul) ////////// // functions overriding virtual functions from base classes ////////// // public void mul::print(const print_context & c, unsigned level) const { if (is_a(c)) { inherited::print(c, level); } else if (is_a(c)) { if (precedence() <= level) c.s << "("; if (!overall_coeff.is_equal(_ex1)) { overall_coeff.print(c, precedence()); c.s << "*"; } // Print arguments, separated by "*" or "/" epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { // If the first argument is a negative integer power, it gets printed as "1.0/" if (it == seq.begin() && ex_to(it->coeff).is_integer() && it->coeff.info(info_flags::negative)) { if (is_a(c)) c.s << "recip("; else c.s << "1.0/"; } // If the exponent is 1 or -1, it is left out if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1)) it->rest.print(c, precedence()); else { // Outer parens around ex needed for broken gcc-2.95 parser: (ex(power(it->rest, abs(ex_to(it->coeff))))).print(c, level); } // Separator is "/" for negative integer powers, "*" otherwise ++it; if (it != itend) { if (ex_to(it->coeff).is_integer() && it->coeff.info(info_flags::negative)) c.s << "/"; else c.s << "*"; } } if (precedence() <= level) c.s << ")"; } else if (is_a(c)) { c.s << class_name() << '('; op(0).print(c); for (unsigned i=1; i(c)) c.s << "{("; else c.s << "("; } bool first = true; // First print the overall numeric coefficient numeric coeff = ex_to(overall_coeff); if (coeff.csgn() == -1) c.s << '-'; if (!coeff.is_equal(_num1) && !coeff.is_equal(_num_1)) { if (coeff.is_rational()) { if (coeff.is_negative()) (-coeff).print(c); else coeff.print(c); } else { if (coeff.csgn() == -1) (-coeff).print(c, precedence()); else coeff.print(c, precedence()); } if (is_a(c)) c.s << ' '; else c.s << '*'; } // Then proceed with the remaining factors epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { if (!first) { if (is_a(c)) c.s << ' '; else c.s << '*'; } else { first = false; } recombine_pair_to_ex(*it).print(c, precedence()); ++it; } if (precedence() <= level) { if (is_a(c)) c.s << ")}"; else c.s << ")"; } } } bool mul::info(unsigned inf) const { switch (inf) { case info_flags::polynomial: case info_flags::integer_polynomial: case info_flags::cinteger_polynomial: case info_flags::rational_polynomial: case info_flags::crational_polynomial: case info_flags::rational_function: { epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (!(recombine_pair_to_ex(*i).info(inf))) return false; ++i; } return overall_coeff.info(inf); } case info_flags::algebraic: { epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if ((recombine_pair_to_ex(*i).info(inf))) return true; ++i; } return false; } } return inherited::info(inf); } int mul::degree(const ex & s) const { // Sum up degrees of factors int deg_sum = 0; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (ex_to(i->coeff).is_integer()) deg_sum += i->rest.degree(s) * ex_to(i->coeff).to_int(); ++i; } return deg_sum; } int mul::ldegree(const ex & s) const { // Sum up degrees of factors int deg_sum = 0; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (ex_to(i->coeff).is_integer()) deg_sum += i->rest.ldegree(s) * ex_to(i->coeff).to_int(); ++i; } return deg_sum; } ex mul::coeff(const ex & s, int n) const { exvector coeffseq; coeffseq.reserve(seq.size()+1); if (n==0) { // product of individual coeffs // if a non-zero power of s is found, the resulting product will be 0 epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { coeffseq.push_back(recombine_pair_to_ex(*i).coeff(s,n)); ++i; } coeffseq.push_back(overall_coeff); return (new mul(coeffseq))->setflag(status_flags::dynallocated); } epvector::const_iterator i = seq.begin(), end = seq.end(); bool coeff_found = false; while (i != end) { ex t = recombine_pair_to_ex(*i); ex c = t.coeff(s, n); if (!c.is_zero()) { coeffseq.push_back(c); coeff_found = 1; } else { coeffseq.push_back(t); } ++i; } if (coeff_found) { coeffseq.push_back(overall_coeff); return (new mul(coeffseq))->setflag(status_flags::dynallocated); } return _ex0; } /** Perform automatic term rewriting rules in this class. In the following * x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2... * stand for such expressions that contain a plain number. * - *(...,x;0) -> 0 * - *(+(x1,x2,...);c) -> *(+(*(x1,c),*(x2,c),...)) * - *(x;1) -> x * - *(;c) -> c * * @param level cut-off in recursive evaluation */ ex mul::eval(int level) const { epvector *evaled_seqp = evalchildren(level); if (evaled_seqp) { // do more evaluation later return (new mul(evaled_seqp,overall_coeff))-> setflag(status_flags::dynallocated); } #ifdef DO_GINAC_ASSERT epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { GINAC_ASSERT((!is_exactly_a(i->rest)) || (!(ex_to(i->coeff).is_integer()))); GINAC_ASSERT(!(i->is_canonical_numeric())); if (is_ex_exactly_of_type(recombine_pair_to_ex(*i), numeric)) print(print_tree(std::cerr)); GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*i))); /* for paranoia */ expair p = split_ex_to_pair(recombine_pair_to_ex(*i)); GINAC_ASSERT(p.rest.is_equal(i->rest)); GINAC_ASSERT(p.coeff.is_equal(i->coeff)); /* end paranoia */ ++i; } #endif // def DO_GINAC_ASSERT if (flags & status_flags::evaluated) { GINAC_ASSERT(seq.size()>0); GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1)); return *this; } int seq_size = seq.size(); if (overall_coeff.is_zero()) { // *(...,x;0) -> 0 return _ex0; } else if (seq_size==0) { // *(;c) -> c return overall_coeff; } else if (seq_size==1 && overall_coeff.is_equal(_ex1)) { // *(x;1) -> x return recombine_pair_to_ex(*(seq.begin())); } else if ((seq_size==1) && is_ex_exactly_of_type((*seq.begin()).rest,add) && ex_to((*seq.begin()).coeff).is_equal(_num1)) { // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +()) const add & addref = ex_to((*seq.begin()).rest); epvector *distrseq = new epvector(); distrseq->reserve(addref.seq.size()); epvector::const_iterator i = addref.seq.begin(), end = addref.seq.end(); while (i != end) { distrseq->push_back(addref.combine_pair_with_coeff_to_pair(*i, overall_coeff)); ++i; } return (new add(distrseq, ex_to(addref.overall_coeff). mul_dyn(ex_to(overall_coeff)))) ->setflag(status_flags::dynallocated | status_flags::evaluated); } return this->hold(); } ex mul::evalf(int level) const { if (level==1) return mul(seq,overall_coeff); if (level==-max_recursion_level) throw(std::runtime_error("max recursion level reached")); epvector *s = new epvector(); s->reserve(seq.size()); --level; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { s->push_back(combine_ex_with_coeff_to_pair(i->rest.evalf(level), i->coeff)); ++i; } return mul(s, overall_coeff.evalf(level)); } ex mul::evalm(void) const { // numeric*matrix if (seq.size() == 1 && seq[0].coeff.is_equal(_ex1) && is_ex_of_type(seq[0].rest, matrix)) return ex_to(seq[0].rest).mul(ex_to(overall_coeff)); // Evaluate children first, look whether there are any matrices at all // (there can be either no matrices or one matrix; if there were more // than one matrix, it would be a non-commutative product) epvector *s = new epvector; s->reserve(seq.size()); bool have_matrix = false; epvector::iterator the_matrix; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { const ex &m = recombine_pair_to_ex(*i).evalm(); s->push_back(split_ex_to_pair(m)); if (is_ex_of_type(m, matrix)) { have_matrix = true; the_matrix = s->end() - 1; } ++i; } if (have_matrix) { // The product contained a matrix. We will multiply all other factors // into that matrix. matrix m = ex_to(the_matrix->rest); s->erase(the_matrix); ex scalar = (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); return m.mul_scalar(scalar); } else return (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); } ex mul::simplify_ncmul(const exvector & v) const { if (seq.empty()) return inherited::simplify_ncmul(v); // Find first noncommutative element and call its simplify_ncmul() epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (i->rest.return_type() == return_types::noncommutative) return i->rest.simplify_ncmul(v); ++i; } return inherited::simplify_ncmul(v); } // protected /** Implementation of ex::diff() for a product. It applies the product rule. * @see ex::diff */ ex mul::derivative(const symbol & s) const { unsigned num = seq.size(); exvector addseq; addseq.reserve(num); // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) epvector mulseq = seq; epvector::const_iterator i = seq.begin(), end = seq.end(); epvector::iterator i2 = mulseq.begin(); while (i != end) { expair ep = split_ex_to_pair(power(i->rest, i->coeff - _ex1) * i->rest.diff(s)); ep.swap(*i2); addseq.push_back((new mul(mulseq, overall_coeff * i->coeff))->setflag(status_flags::dynallocated)); ep.swap(*i2); ++i; ++i2; } return (new add(addseq))->setflag(status_flags::dynallocated); } int mul::compare_same_type(const basic & other) const { return inherited::compare_same_type(other); } bool mul::is_equal_same_type(const basic & other) const { return inherited::is_equal_same_type(other); } unsigned mul::return_type(void) const { if (seq.empty()) { // mul without factors: should not happen, but commutes return return_types::commutative; } bool all_commutative = true; epvector::const_iterator noncommutative_element; // point to first found nc element epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { unsigned rt = i->rest.return_type(); if (rt == return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc if ((rt == return_types::noncommutative) && (all_commutative)) { // first nc element found, remember position noncommutative_element = i; all_commutative = false; } if ((rt == return_types::noncommutative) && (!all_commutative)) { // another nc element found, compare type_infos if (noncommutative_element->rest.return_type_tinfo() != i->rest.return_type_tinfo()) { // diffent types -> mul is ncc return return_types::noncommutative_composite; } } ++i; } // all factors checked return all_commutative ? return_types::commutative : return_types::noncommutative; } unsigned mul::return_type_tinfo(void) const { if (seq.empty()) return tinfo_key; // mul without factors: should not happen // return type_info of first noncommutative element epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (i->rest.return_type() == return_types::noncommutative) return i->rest.return_type_tinfo(); ++i; } // no noncommutative element found, should not happen return tinfo_key; } ex mul::thisexpairseq(const epvector & v, const ex & oc) const { return (new mul(v, oc))->setflag(status_flags::dynallocated); } ex mul::thisexpairseq(epvector * vp, const ex & oc) const { return (new mul(vp, oc))->setflag(status_flags::dynallocated); } expair mul::split_ex_to_pair(const ex & e) const { if (is_ex_exactly_of_type(e,power)) { const power & powerref = ex_to(e); if (is_ex_exactly_of_type(powerref.exponent,numeric)) return expair(powerref.basis,powerref.exponent); } return expair(e,_ex1); } expair mul::combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const { // to avoid duplication of power simplification rules, // we create a temporary power object // otherwise it would be hard to correctly simplify // expression like (4^(1/3))^(3/2) if (are_ex_trivially_equal(c,_ex1)) return split_ex_to_pair(e); return split_ex_to_pair(power(e,c)); } expair mul::combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const { // to avoid duplication of power simplification rules, // we create a temporary power object // otherwise it would be hard to correctly simplify // expression like (4^(1/3))^(3/2) if (are_ex_trivially_equal(c,_ex1)) return p; return split_ex_to_pair(power(recombine_pair_to_ex(p),c)); } ex mul::recombine_pair_to_ex(const expair & p) const { if (ex_to(p.coeff).is_equal(_num1)) return p.rest; else return power(p.rest,p.coeff); } bool mul::expair_needs_further_processing(epp it) { if (is_ex_exactly_of_type((*it).rest,mul) && ex_to((*it).coeff).is_integer()) { // combined pair is product with integer power -> expand it *it = split_ex_to_pair(recombine_pair_to_ex(*it)); return true; } if (is_ex_exactly_of_type((*it).rest,numeric)) { expair ep=split_ex_to_pair(recombine_pair_to_ex(*it)); if (!ep.is_equal(*it)) { // combined pair is a numeric power which can be simplified *it = ep; return true; } if (ex_to((*it).coeff).is_equal(_num1)) { // combined pair has coeff 1 and must be moved to the end return true; } } return false; } ex mul::default_overall_coeff(void) const { return _ex1; } void mul::combine_overall_coeff(const ex & c) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c)); overall_coeff = ex_to(overall_coeff).mul_dyn(ex_to(c)); } void mul::combine_overall_coeff(const ex & c1, const ex & c2) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c1)); GINAC_ASSERT(is_exactly_a(c2)); overall_coeff = ex_to(overall_coeff).mul_dyn(ex_to(c1).power(ex_to(c2))); } bool mul::can_make_flat(const expair & p) const { GINAC_ASSERT(is_exactly_a(p.coeff)); // this assertion will probably fail somewhere // it would require a more careful make_flat, obeying the power laws // probably should return true only if p.coeff is integer return ex_to(p.coeff).is_equal(_num1); } ex mul::expand(unsigned options) const { // First, expand the children epvector * expanded_seqp = expandchildren(options); const epvector & expanded_seq = (expanded_seqp == NULL) ? seq : *expanded_seqp; // Now, look for all the factors that are sums and multiply each one out // with the next one that is found while collecting the factors which are // not sums int number_of_adds = 0; ex last_expanded = _ex1; epvector non_adds; non_adds.reserve(expanded_seq.size()); epvector::const_iterator cit = expanded_seq.begin(), last = expanded_seq.end(); while (cit != last) { if (is_ex_exactly_of_type(cit->rest, add) && (cit->coeff.is_equal(_ex1))) { ++number_of_adds; if (is_ex_exactly_of_type(last_expanded, add)) { #if 0 // Expand a product of two sums, simple and robust version. const add & add1 = ex_to(last_expanded); const add & add2 = ex_to(cit->rest); const int n1 = add1.nops(); const int n2 = add2.nops(); ex tmp_accu; exvector distrseq; distrseq.reserve(n2); for (int i1=0; i1 setflag(status_flags::dynallocated); } last_expanded = tmp_accu; #else // Expand a product of two sums, aggressive version. // Caring for the overall coefficients in separate loops can // sometimes give a performance gain of up to 15%! const int sizedifference = ex_to(last_expanded).seq.size()-ex_to(cit->rest).seq.size(); // add2 is for the inner loop and should be the bigger of the two sums // in the presence of asymptotically good sorting: const add& add1 = (sizedifference<0 ? ex_to(last_expanded) : ex_to(cit->rest)); const add& add2 = (sizedifference<0 ? ex_to(cit->rest) : ex_to(last_expanded)); const epvector::const_iterator add1begin = add1.seq.begin(); const epvector::const_iterator add1end = add1.seq.end(); const epvector::const_iterator add2begin = add2.seq.begin(); const epvector::const_iterator add2end = add2.seq.end(); epvector distrseq; distrseq.reserve(add1.seq.size()+add2.seq.size()); // Multiply add2 with the overall coefficient of add1 and append it to distrseq: if (!add1.overall_coeff.is_zero()) { if (add1.overall_coeff.is_equal(_ex1)) distrseq.insert(distrseq.end(),add2begin,add2end); else for (epvector::const_iterator i=add2begin; i!=add2end; ++i) distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add1.overall_coeff)))); } // Multiply add1 with the overall coefficient of add2 and append it to distrseq: if (!add2.overall_coeff.is_zero()) { if (add2.overall_coeff.is_equal(_ex1)) distrseq.insert(distrseq.end(),add1begin,add1end); else for (epvector::const_iterator i=add1begin; i!=add1end; ++i) distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add2.overall_coeff)))); } // Compute the new overall coefficient and put it together: ex tmp_accu = (new add(distrseq, add1.overall_coeff*add2.overall_coeff))->setflag(status_flags::dynallocated); // Multiply explicitly all non-numeric terms of add1 and add2: for (epvector::const_iterator i1=add1begin; i1!=add1end; ++i1) { // We really have to combine terms here in order to compactify // the result. Otherwise it would become waayy tooo bigg. numeric oc; distrseq.clear(); for (epvector::const_iterator i2=add2begin; i2!=add2end; ++i2) { // Don't push_back expairs which might have a rest that evaluates to a numeric, // since that would violate an invariant of expairseq: const ex rest = (new mul(i1->rest, i2->rest))->setflag(status_flags::dynallocated); if (is_ex_exactly_of_type(rest, numeric)) oc += ex_to(rest).mul(ex_to(i1->coeff).mul(ex_to(i2->coeff))); else distrseq.push_back(expair(rest, ex_to(i1->coeff).mul_dyn(ex_to(i2->coeff)))); } tmp_accu += (new add(distrseq, oc))->setflag(status_flags::dynallocated); } last_expanded = tmp_accu; #endif } else { non_adds.push_back(split_ex_to_pair(last_expanded)); last_expanded = cit->rest; } } else { non_adds.push_back(*cit); } ++cit; } if (expanded_seqp) delete expanded_seqp; // Now the only remaining thing to do is to multiply the factors which // were not sums into the "last_expanded" sum if (is_ex_exactly_of_type(last_expanded, add)) { const add & finaladd = ex_to(last_expanded); exvector distrseq; int n = finaladd.nops(); distrseq.reserve(n); for (int i=0; i setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); } return ((new add(distrseq))-> setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); } non_adds.push_back(split_ex_to_pair(last_expanded)); return (new mul(non_adds, overall_coeff))-> setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); } ////////// // new virtual functions which can be overridden by derived classes ////////// // none ////////// // non-virtual functions in this class ////////// /** Member-wise expand the expairs representing this sequence. This must be * overridden from expairseq::expandchildren() and done iteratively in order * to allow for early cancallations and thus safe memory. * * @see mul::expand() * @return pointer to epvector containing expanded representation or zero * pointer, if sequence is unchanged. */ epvector * mul::expandchildren(unsigned options) const { const epvector::const_iterator last = seq.end(); epvector::const_iterator cit = seq.begin(); while (cit!=last) { const ex & factor = recombine_pair_to_ex(*cit); const ex & expanded_factor = factor.expand(options); if (!are_ex_trivially_equal(factor,expanded_factor)) { // something changed, copy seq, eval and return it epvector *s = new epvector; s->reserve(seq.size()); // copy parts of seq which are known not to have changed epvector::const_iterator cit2 = seq.begin(); while (cit2!=cit) { s->push_back(*cit2); ++cit2; } // copy first changed element s->push_back(split_ex_to_pair(expanded_factor)); ++cit2; // copy rest while (cit2!=last) { s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); ++cit2; } return s; } ++cit; } return 0; // nothing has changed } } // namespace GiNaC