/** @file mul.cpp * * Implementation of GiNaC's products of expressions. */ /* * GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include "mul.h" #include "add.h" #include "power.h" #include "operators.h" #include "matrix.h" #include "lst.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mul, expairseq, print_func(&mul::do_print). print_func(&mul::do_print_latex). print_func(&mul::do_print_csrc). print_func(&mul::do_print_tree). print_func(&mul::do_print_python_repr)) ////////// // default constructor ////////// mul::mul() { tinfo_key = TINFO_mul; } ////////// // other constructors ////////// // public mul::mul(const ex & lh, const ex & rh) { tinfo_key = TINFO_mul; overall_coeff = _ex1; construct_from_2_ex(lh,rh); GINAC_ASSERT(is_canonical()); } mul::mul(const exvector & v) { tinfo_key = TINFO_mul; overall_coeff = _ex1; construct_from_exvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(const epvector & v) { tinfo_key = TINFO_mul; overall_coeff = _ex1; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(const epvector & v, const ex & oc) { tinfo_key = TINFO_mul; overall_coeff = oc; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } mul::mul(std::auto_ptr vp, const ex & oc) { tinfo_key = TINFO_mul; GINAC_ASSERT(vp.get()!=0); overall_coeff = oc; construct_from_epvector(*vp); GINAC_ASSERT(is_canonical()); } mul::mul(const ex & lh, const ex & mh, const ex & rh) { tinfo_key = TINFO_mul; exvector factors; factors.reserve(3); factors.push_back(lh); factors.push_back(mh); factors.push_back(rh); overall_coeff = _ex1; construct_from_exvector(factors); GINAC_ASSERT(is_canonical()); } ////////// // archiving ////////// DEFAULT_ARCHIVING(mul) ////////// // functions overriding virtual functions from base classes ////////// void mul::print_overall_coeff(const print_context & c, const char *mul_sym) const { const numeric &coeff = ex_to(overall_coeff); if (coeff.csgn() == -1) c.s << '-'; if (!coeff.is_equal(_num1) && !coeff.is_equal(_num_1)) { if (coeff.is_rational()) { if (coeff.is_negative()) (-coeff).print(c); else coeff.print(c); } else { if (coeff.csgn() == -1) (-coeff).print(c, precedence()); else coeff.print(c, precedence()); } c.s << mul_sym; } } void mul::do_print(const print_context & c, unsigned level) const { if (precedence() <= level) c.s << '('; print_overall_coeff(c, "*"); epvector::const_iterator it = seq.begin(), itend = seq.end(); bool first = true; while (it != itend) { if (!first) c.s << '*'; else first = false; recombine_pair_to_ex(*it).print(c, precedence()); ++it; } if (precedence() <= level) c.s << ')'; } void mul::do_print_latex(const print_latex & c, unsigned level) const { if (precedence() <= level) c.s << "{("; print_overall_coeff(c, " "); // Separate factors into those with negative numeric exponent // and all others epvector::const_iterator it = seq.begin(), itend = seq.end(); exvector neg_powers, others; while (it != itend) { GINAC_ASSERT(is_exactly_a(it->coeff)); if (ex_to(it->coeff).is_negative()) neg_powers.push_back(recombine_pair_to_ex(expair(it->rest, -(it->coeff)))); else others.push_back(recombine_pair_to_ex(*it)); ++it; } if (!neg_powers.empty()) { // Factors with negative exponent are printed as a fraction c.s << "\\frac{"; mul(others).eval().print(c); c.s << "}{"; mul(neg_powers).eval().print(c); c.s << "}"; } else { // All other factors are printed in the ordinary way exvector::const_iterator vit = others.begin(), vitend = others.end(); while (vit != vitend) { c.s << ' '; vit->print(c, precedence()); ++vit; } } if (precedence() <= level) c.s << ")}"; } void mul::do_print_csrc(const print_csrc & c, unsigned level) const { if (precedence() <= level) c.s << "("; if (!overall_coeff.is_equal(_ex1)) { overall_coeff.print(c, precedence()); c.s << "*"; } // Print arguments, separated by "*" or "/" epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { // If the first argument is a negative integer power, it gets printed as "1.0/" bool needclosingparenthesis = false; if (it == seq.begin() && it->coeff.info(info_flags::negint)) { if (is_a(c)) { c.s << "recip("; needclosingparenthesis = true; } else c.s << "1.0/"; } // If the exponent is 1 or -1, it is left out if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1)) it->rest.print(c, precedence()); else if (it->coeff.info(info_flags::negint)) // Outer parens around ex needed for broken GCC parser: (ex(power(it->rest, -ex_to(it->coeff)))).print(c, level); else // Outer parens around ex needed for broken GCC parser: (ex(power(it->rest, ex_to(it->coeff)))).print(c, level); if (needclosingparenthesis) c.s << ")"; // Separator is "/" for negative integer powers, "*" otherwise ++it; if (it != itend) { if (it->coeff.info(info_flags::negint)) c.s << "/"; else c.s << "*"; } } if (precedence() <= level) c.s << ")"; } void mul::do_print_python_repr(const print_python_repr & c, unsigned level) const { c.s << class_name() << '('; op(0).print(c); for (size_t i=1; i(i->coeff).is_integer()) deg_sum += i->rest.degree(s) * ex_to(i->coeff).to_int(); ++i; } return deg_sum; } int mul::ldegree(const ex & s) const { // Sum up degrees of factors int deg_sum = 0; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (ex_to(i->coeff).is_integer()) deg_sum += i->rest.ldegree(s) * ex_to(i->coeff).to_int(); ++i; } return deg_sum; } ex mul::coeff(const ex & s, int n) const { exvector coeffseq; coeffseq.reserve(seq.size()+1); if (n==0) { // product of individual coeffs // if a non-zero power of s is found, the resulting product will be 0 epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { coeffseq.push_back(recombine_pair_to_ex(*i).coeff(s,n)); ++i; } coeffseq.push_back(overall_coeff); return (new mul(coeffseq))->setflag(status_flags::dynallocated); } epvector::const_iterator i = seq.begin(), end = seq.end(); bool coeff_found = false; while (i != end) { ex t = recombine_pair_to_ex(*i); ex c = t.coeff(s, n); if (!c.is_zero()) { coeffseq.push_back(c); coeff_found = 1; } else { coeffseq.push_back(t); } ++i; } if (coeff_found) { coeffseq.push_back(overall_coeff); return (new mul(coeffseq))->setflag(status_flags::dynallocated); } return _ex0; } /** Perform automatic term rewriting rules in this class. In the following * x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2... * stand for such expressions that contain a plain number. * - *(...,x;0) -> 0 * - *(+(x1,x2,...);c) -> *(+(*(x1,c),*(x2,c),...)) * - *(x;1) -> x * - *(;c) -> c * * @param level cut-off in recursive evaluation */ ex mul::eval(int level) const { std::auto_ptr evaled_seqp = evalchildren(level); if (evaled_seqp.get()) { // do more evaluation later return (new mul(evaled_seqp, overall_coeff))-> setflag(status_flags::dynallocated); } #ifdef DO_GINAC_ASSERT epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { GINAC_ASSERT((!is_exactly_a(i->rest)) || (!(ex_to(i->coeff).is_integer()))); GINAC_ASSERT(!(i->is_canonical_numeric())); if (is_exactly_a(recombine_pair_to_ex(*i))) print(print_tree(std::cerr)); GINAC_ASSERT(!is_exactly_a(recombine_pair_to_ex(*i))); /* for paranoia */ expair p = split_ex_to_pair(recombine_pair_to_ex(*i)); GINAC_ASSERT(p.rest.is_equal(i->rest)); GINAC_ASSERT(p.coeff.is_equal(i->coeff)); /* end paranoia */ ++i; } #endif // def DO_GINAC_ASSERT if (flags & status_flags::evaluated) { GINAC_ASSERT(seq.size()>0); GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1)); return *this; } int seq_size = seq.size(); if (overall_coeff.is_zero()) { // *(...,x;0) -> 0 return _ex0; } else if (seq_size==0) { // *(;c) -> c return overall_coeff; } else if (seq_size==1 && overall_coeff.is_equal(_ex1)) { // *(x;1) -> x return recombine_pair_to_ex(*(seq.begin())); } else if ((seq_size==1) && is_exactly_a((*seq.begin()).rest) && ex_to((*seq.begin()).coeff).is_equal(_num1)) { // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +()) const add & addref = ex_to((*seq.begin()).rest); std::auto_ptr distrseq(new epvector); distrseq->reserve(addref.seq.size()); epvector::const_iterator i = addref.seq.begin(), end = addref.seq.end(); while (i != end) { distrseq->push_back(addref.combine_pair_with_coeff_to_pair(*i, overall_coeff)); ++i; } return (new add(distrseq, ex_to(addref.overall_coeff). mul_dyn(ex_to(overall_coeff)))) ->setflag(status_flags::dynallocated | status_flags::evaluated); } return this->hold(); } ex mul::evalf(int level) const { if (level==1) return mul(seq,overall_coeff); if (level==-max_recursion_level) throw(std::runtime_error("max recursion level reached")); std::auto_ptr s(new epvector); s->reserve(seq.size()); --level; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { s->push_back(combine_ex_with_coeff_to_pair(i->rest.evalf(level), i->coeff)); ++i; } return mul(s, overall_coeff.evalf(level)); } ex mul::evalm() const { // numeric*matrix if (seq.size() == 1 && seq[0].coeff.is_equal(_ex1) && is_a(seq[0].rest)) return ex_to(seq[0].rest).mul(ex_to(overall_coeff)); // Evaluate children first, look whether there are any matrices at all // (there can be either no matrices or one matrix; if there were more // than one matrix, it would be a non-commutative product) std::auto_ptr s(new epvector); s->reserve(seq.size()); bool have_matrix = false; epvector::iterator the_matrix; epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { const ex &m = recombine_pair_to_ex(*i).evalm(); s->push_back(split_ex_to_pair(m)); if (is_a(m)) { have_matrix = true; the_matrix = s->end() - 1; } ++i; } if (have_matrix) { // The product contained a matrix. We will multiply all other factors // into that matrix. matrix m = ex_to(the_matrix->rest); s->erase(the_matrix); ex scalar = (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); return m.mul_scalar(scalar); } else return (new mul(s, overall_coeff))->setflag(status_flags::dynallocated); } ex mul::eval_ncmul(const exvector & v) const { if (seq.empty()) return inherited::eval_ncmul(v); // Find first noncommutative element and call its eval_ncmul() epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (i->rest.return_type() == return_types::noncommutative) return i->rest.eval_ncmul(v); ++i; } return inherited::eval_ncmul(v); } bool tryfactsubs(const ex & origfactor, const ex & patternfactor, int & nummatches, lst & repls) { ex origbase; int origexponent; int origexpsign; if (is_exactly_a(origfactor) && origfactor.op(1).info(info_flags::integer)) { origbase = origfactor.op(0); int expon = ex_to(origfactor.op(1)).to_int(); origexponent = expon > 0 ? expon : -expon; origexpsign = expon > 0 ? 1 : -1; } else { origbase = origfactor; origexponent = 1; origexpsign = 1; } ex patternbase; int patternexponent; int patternexpsign; if (is_exactly_a(patternfactor) && patternfactor.op(1).info(info_flags::integer)) { patternbase = patternfactor.op(0); int expon = ex_to(patternfactor.op(1)).to_int(); patternexponent = expon > 0 ? expon : -expon; patternexpsign = expon > 0 ? 1 : -1; } else { patternbase = patternfactor; patternexponent = 1; patternexpsign = 1; } lst saverepls = repls; if (origexponent < patternexponent || origexpsign != patternexpsign || !origbase.match(patternbase,saverepls)) return false; repls = saverepls; int newnummatches = origexponent / patternexponent; if (newnummatches < nummatches) nummatches = newnummatches; return true; } ex mul::algebraic_subs_mul(const exmap & m, unsigned options) const { std::vector subsed(seq.size(), false); exvector subsresult(seq.size()); for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) { if (is_exactly_a(it->first)) { int nummatches = std::numeric_limits::max(); std::vector currsubsed(seq.size(), false); bool succeed = true; lst repls; for (size_t j=0; jfirst.nops(); j++) { bool found=false; for (size_t k=0; kfirst.op(j), nummatches, repls)) { currsubsed[k] = true; found = true; break; } } if (!found) { succeed = false; break; } } if (!succeed) continue; bool foundfirstsubsedfactor = false; for (size_t j=0; jsecond.subs(ex(repls), subs_options::no_pattern) / it->first.subs(ex(repls), subs_options::no_pattern), nummatches); } subsed[j] = true; } } } else { int nummatches = std::numeric_limits::max(); lst repls; for (size_t j=0; jnops(); j++) { if (!subsed[j] && tryfactsubs(op(j), it->first, nummatches, repls)) { subsed[j] = true; subsresult[j] = op(j) * power(it->second.subs(ex(repls), subs_options::no_pattern) / it->first.subs(ex(repls), subs_options::no_pattern), nummatches); } } } } bool subsfound = false; for (size_t i=0; isetflag(status_flags::dynallocated); } // protected /** Implementation of ex::diff() for a product. It applies the product rule. * @see ex::diff */ ex mul::derivative(const symbol & s) const { size_t num = seq.size(); exvector addseq; addseq.reserve(num); // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c) epvector mulseq = seq; epvector::const_iterator i = seq.begin(), end = seq.end(); epvector::iterator i2 = mulseq.begin(); while (i != end) { expair ep = split_ex_to_pair(power(i->rest, i->coeff - _ex1) * i->rest.diff(s)); ep.swap(*i2); addseq.push_back((new mul(mulseq, overall_coeff * i->coeff))->setflag(status_flags::dynallocated)); ep.swap(*i2); ++i; ++i2; } return (new add(addseq))->setflag(status_flags::dynallocated); } int mul::compare_same_type(const basic & other) const { return inherited::compare_same_type(other); } unsigned mul::return_type() const { if (seq.empty()) { // mul without factors: should not happen, but commutates return return_types::commutative; } bool all_commutative = true; epvector::const_iterator noncommutative_element; // point to first found nc element epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { unsigned rt = i->rest.return_type(); if (rt == return_types::noncommutative_composite) return rt; // one ncc -> mul also ncc if ((rt == return_types::noncommutative) && (all_commutative)) { // first nc element found, remember position noncommutative_element = i; all_commutative = false; } if ((rt == return_types::noncommutative) && (!all_commutative)) { // another nc element found, compare type_infos if (noncommutative_element->rest.return_type_tinfo() != i->rest.return_type_tinfo()) { // diffent types -> mul is ncc return return_types::noncommutative_composite; } } ++i; } // all factors checked return all_commutative ? return_types::commutative : return_types::noncommutative; } unsigned mul::return_type_tinfo() const { if (seq.empty()) return tinfo_key; // mul without factors: should not happen // return type_info of first noncommutative element epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (i->rest.return_type() == return_types::noncommutative) return i->rest.return_type_tinfo(); ++i; } // no noncommutative element found, should not happen return tinfo_key; } ex mul::thisexpairseq(const epvector & v, const ex & oc) const { return (new mul(v, oc))->setflag(status_flags::dynallocated); } ex mul::thisexpairseq(std::auto_ptr vp, const ex & oc) const { return (new mul(vp, oc))->setflag(status_flags::dynallocated); } expair mul::split_ex_to_pair(const ex & e) const { if (is_exactly_a(e)) { const power & powerref = ex_to(e); if (is_exactly_a(powerref.exponent)) return expair(powerref.basis,powerref.exponent); } return expair(e,_ex1); } expair mul::combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const { // to avoid duplication of power simplification rules, // we create a temporary power object // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) if (c.is_equal(_ex1)) return split_ex_to_pair(e); return split_ex_to_pair(power(e,c)); } expair mul::combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const { // to avoid duplication of power simplification rules, // we create a temporary power object // otherwise it would be hard to correctly evaluate // expression like (4^(1/3))^(3/2) if (c.is_equal(_ex1)) return p; return split_ex_to_pair(power(recombine_pair_to_ex(p),c)); } ex mul::recombine_pair_to_ex(const expair & p) const { if (ex_to(p.coeff).is_equal(_num1)) return p.rest; else return (new power(p.rest,p.coeff))->setflag(status_flags::dynallocated); } bool mul::expair_needs_further_processing(epp it) { if (is_exactly_a(it->rest) && ex_to(it->coeff).is_integer()) { // combined pair is product with integer power -> expand it *it = split_ex_to_pair(recombine_pair_to_ex(*it)); return true; } if (is_exactly_a(it->rest)) { expair ep = split_ex_to_pair(recombine_pair_to_ex(*it)); if (!ep.is_equal(*it)) { // combined pair is a numeric power which can be simplified *it = ep; return true; } if (it->coeff.is_equal(_ex1)) { // combined pair has coeff 1 and must be moved to the end return true; } } return false; } ex mul::default_overall_coeff() const { return _ex1; } void mul::combine_overall_coeff(const ex & c) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c)); overall_coeff = ex_to(overall_coeff).mul_dyn(ex_to(c)); } void mul::combine_overall_coeff(const ex & c1, const ex & c2) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c1)); GINAC_ASSERT(is_exactly_a(c2)); overall_coeff = ex_to(overall_coeff).mul_dyn(ex_to(c1).power(ex_to(c2))); } bool mul::can_make_flat(const expair & p) const { GINAC_ASSERT(is_exactly_a(p.coeff)); // this assertion will probably fail somewhere // it would require a more careful make_flat, obeying the power laws // probably should return true only if p.coeff is integer return ex_to(p.coeff).is_equal(_num1); } bool mul::can_be_further_expanded(const ex & e) { if (is_exactly_a(e)) { for (epvector::const_iterator cit = ex_to(e).seq.begin(); cit != ex_to(e).seq.end(); ++cit) { if (is_exactly_a(cit->rest) && cit->coeff.info(info_flags::posint)) return true; } } else if (is_exactly_a(e)) { if (is_exactly_a(e.op(0)) && e.op(1).info(info_flags::posint)) return true; } return false; } ex mul::expand(unsigned options) const { // First, expand the children std::auto_ptr expanded_seqp = expandchildren(options); const epvector & expanded_seq = (expanded_seqp.get() ? *expanded_seqp : seq); // Now, look for all the factors that are sums and multiply each one out // with the next one that is found while collecting the factors which are // not sums ex last_expanded = _ex1; bool need_reexpand = false; epvector non_adds; non_adds.reserve(expanded_seq.size()); for (epvector::const_iterator cit = expanded_seq.begin(); cit != expanded_seq.end(); ++cit) { if (is_exactly_a(cit->rest) && (cit->coeff.is_equal(_ex1))) { if (is_exactly_a(last_expanded)) { // Expand a product of two sums, aggressive version. // Caring for the overall coefficients in separate loops can // sometimes give a performance gain of up to 15%! const int sizedifference = ex_to(last_expanded).seq.size()-ex_to(cit->rest).seq.size(); // add2 is for the inner loop and should be the bigger of the two sums // in the presence of asymptotically good sorting: const add& add1 = (sizedifference<0 ? ex_to(last_expanded) : ex_to(cit->rest)); const add& add2 = (sizedifference<0 ? ex_to(cit->rest) : ex_to(last_expanded)); const epvector::const_iterator add1begin = add1.seq.begin(); const epvector::const_iterator add1end = add1.seq.end(); const epvector::const_iterator add2begin = add2.seq.begin(); const epvector::const_iterator add2end = add2.seq.end(); epvector distrseq; distrseq.reserve(add1.seq.size()+add2.seq.size()); // Multiply add2 with the overall coefficient of add1 and append it to distrseq: if (!add1.overall_coeff.is_zero()) { if (add1.overall_coeff.is_equal(_ex1)) distrseq.insert(distrseq.end(),add2begin,add2end); else for (epvector::const_iterator i=add2begin; i!=add2end; ++i) distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add1.overall_coeff)))); } // Multiply add1 with the overall coefficient of add2 and append it to distrseq: if (!add2.overall_coeff.is_zero()) { if (add2.overall_coeff.is_equal(_ex1)) distrseq.insert(distrseq.end(),add1begin,add1end); else for (epvector::const_iterator i=add1begin; i!=add1end; ++i) distrseq.push_back(expair(i->rest, ex_to(i->coeff).mul_dyn(ex_to(add2.overall_coeff)))); } // Compute the new overall coefficient and put it together: ex tmp_accu = (new add(distrseq, add1.overall_coeff*add2.overall_coeff))->setflag(status_flags::dynallocated); // Multiply explicitly all non-numeric terms of add1 and add2: for (epvector::const_iterator i1=add1begin; i1!=add1end; ++i1) { // We really have to combine terms here in order to compactify // the result. Otherwise it would become waayy tooo bigg. numeric oc; distrseq.clear(); for (epvector::const_iterator i2=add2begin; i2!=add2end; ++i2) { // Don't push_back expairs which might have a rest that evaluates to a numeric, // since that would violate an invariant of expairseq: const ex rest = (new mul(i1->rest, i2->rest))->setflag(status_flags::dynallocated); if (is_exactly_a(rest)) oc += ex_to(rest).mul(ex_to(i1->coeff).mul(ex_to(i2->coeff))); else distrseq.push_back(expair(rest, ex_to(i1->coeff).mul_dyn(ex_to(i2->coeff)))); } tmp_accu += (new add(distrseq, oc))->setflag(status_flags::dynallocated); } last_expanded = tmp_accu; } else { if (!last_expanded.is_equal(_ex1)) non_adds.push_back(split_ex_to_pair(last_expanded)); last_expanded = cit->rest; } } else { non_adds.push_back(*cit); } } // Now the only remaining thing to do is to multiply the factors which // were not sums into the "last_expanded" sum if (is_exactly_a(last_expanded)) { size_t n = last_expanded.nops(); exvector distrseq; distrseq.reserve(n); for (size_t i=0; isetflag(status_flags::dynallocated); if (can_be_further_expanded(term)) distrseq.push_back(term.expand()); else { if (options == 0) ex_to(term).setflag(status_flags::expanded); distrseq.push_back(term); } } return ((new add(distrseq))-> setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0))); } non_adds.push_back(split_ex_to_pair(last_expanded)); ex result = (new mul(non_adds, overall_coeff))->setflag(status_flags::dynallocated); if (can_be_further_expanded(result)) { return result.expand(); } else { if (options == 0) ex_to(result).setflag(status_flags::expanded); return result; } } ////////// // new virtual functions which can be overridden by derived classes ////////// // none ////////// // non-virtual functions in this class ////////// /** Member-wise expand the expairs representing this sequence. This must be * overridden from expairseq::expandchildren() and done iteratively in order * to allow for early cancallations and thus safe memory. * * @see mul::expand() * @return pointer to epvector containing expanded representation or zero * pointer, if sequence is unchanged. */ std::auto_ptr mul::expandchildren(unsigned options) const { const epvector::const_iterator last = seq.end(); epvector::const_iterator cit = seq.begin(); while (cit!=last) { const ex & factor = recombine_pair_to_ex(*cit); const ex & expanded_factor = factor.expand(options); if (!are_ex_trivially_equal(factor,expanded_factor)) { // something changed, copy seq, eval and return it std::auto_ptr s(new epvector); s->reserve(seq.size()); // copy parts of seq which are known not to have changed epvector::const_iterator cit2 = seq.begin(); while (cit2!=cit) { s->push_back(*cit2); ++cit2; } // copy first changed element s->push_back(split_ex_to_pair(expanded_factor)); ++cit2; // copy rest while (cit2!=last) { s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options))); ++cit2; } return s; } ++cit; } return std::auto_ptr(0); // nothing has changed } } // namespace GiNaC