/** @file matrix.h * * Interface to symbolic matrices */ /* * GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef GINAC_MATRIX_H #define GINAC_MATRIX_H #include "basic.h" #include "ex.h" #include "archive.h" #include #include namespace GiNaC { /** Helper template to allow initialization of matrices via an overloaded * comma operator (idea stolen from Blitz++). */ template class matrix_init { public: matrix_init(It i) : iter(i) {} matrix_init operator,(const T & x) { *iter = x; return matrix_init(++iter); } // The following specializations produce much tighter code than the // general case above matrix_init operator,(int x) { *iter = T(x); return matrix_init(++iter); } matrix_init operator,(unsigned int x) { *iter = T(x); return matrix_init(++iter); } matrix_init operator,(long x) { *iter = T(x); return matrix_init(++iter); } matrix_init operator,(unsigned long x) { *iter = T(x); return matrix_init(++iter); } matrix_init operator,(double x) { *iter = T(x); return matrix_init(++iter); } matrix_init operator,(const symbol & x) { *iter = T(x); return matrix_init(++iter); } private: matrix_init(); It iter; }; /** Symbolic matrices. */ class matrix : public basic { GINAC_DECLARE_REGISTERED_CLASS(matrix, basic) // other constructors public: matrix(unsigned r, unsigned c); matrix(unsigned r, unsigned c, const exvector & m2); matrix(unsigned r, unsigned c, const lst & l); // First step of initialization of matrix with a comma-separated seqeuence // of expressions. Subsequent steps are handled by matrix_init<>::operator,(). matrix_init operator=(const ex & x) { m[0] = x; return matrix_init(++m.begin()); } // functions overriding virtual functions from base classes public: size_t nops() const; ex op(size_t i) const; ex & let_op(size_t i); ex eval(int level=0) const; ex evalm() const {return *this;} ex subs(const exmap & m, unsigned options = 0) const; ex eval_indexed(const basic & i) const; ex add_indexed(const ex & self, const ex & other) const; ex scalar_mul_indexed(const ex & self, const numeric & other) const; bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const; ex conjugate() const; ex real_part() const; ex imag_part() const; /** Save (a.k.a. serialize) object into archive. */ void archive(archive_node& n) const; /** Read (a.k.a. deserialize) object from archive. */ void read_archive(const archive_node& n, lst& syms); protected: bool match_same_type(const basic & other) const; unsigned return_type() const { return return_types::noncommutative; }; // non-virtual functions in this class public: unsigned rows() const /// Get number of rows. { return row; } unsigned cols() const /// Get number of columns. { return col; } matrix add(const matrix & other) const; matrix sub(const matrix & other) const; matrix mul(const matrix & other) const; matrix mul(const numeric & other) const; matrix mul_scalar(const ex & other) const; matrix pow(const ex & expn) const; const ex & operator() (unsigned ro, unsigned co) const; ex & operator() (unsigned ro, unsigned co); matrix & set(unsigned ro, unsigned co, const ex & value) { (*this)(ro, co) = value; return *this; } matrix transpose() const; ex determinant(unsigned algo = determinant_algo::automatic) const; ex trace() const; ex charpoly(const ex & lambda) const; matrix inverse() const; matrix solve(const matrix & vars, const matrix & rhs, unsigned algo = solve_algo::automatic) const; unsigned rank() const; bool is_zero_matrix() const; protected: ex determinant_minor() const; int gauss_elimination(const bool det = false); int division_free_elimination(const bool det = false); int fraction_free_elimination(const bool det = false); int pivot(unsigned ro, unsigned co, bool symbolic = true); void print_elements(const print_context & c, const char *row_start, const char *row_end, const char *row_sep, const char *col_sep) const; void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; void do_print_python_repr(const print_python_repr & c, unsigned level) const; // member variables protected: unsigned row; ///< number of rows unsigned col; ///< number of columns exvector m; ///< representation (cols indexed first) }; GINAC_DECLARE_UNARCHIVER(matrix); // wrapper functions around member functions inline size_t nops(const matrix & m) { return m.nops(); } inline ex expand(const matrix & m, unsigned options = 0) { return m.expand(options); } inline ex eval(const matrix & m, int level = 0) { return m.eval(level); } inline ex evalf(const matrix & m, int level = 0) { return m.evalf(level); } inline unsigned rows(const matrix & m) { return m.rows(); } inline unsigned cols(const matrix & m) { return m.cols(); } inline matrix transpose(const matrix & m) { return m.transpose(); } inline ex determinant(const matrix & m, unsigned options = determinant_algo::automatic) { return m.determinant(options); } inline ex trace(const matrix & m) { return m.trace(); } inline ex charpoly(const matrix & m, const ex & lambda) { return m.charpoly(lambda); } inline matrix inverse(const matrix & m) { return m.inverse(); } inline unsigned rank(const matrix & m) { return m.rank(); } // utility functions /** Convert list of lists to matrix. */ extern ex lst_to_matrix(const lst & l); /** Convert list of diagonal elements to matrix. */ extern ex diag_matrix(const lst & l); /** Create an r times c unit matrix. */ extern ex unit_matrix(unsigned r, unsigned c); /** Create a x times x unit matrix. */ inline ex unit_matrix(unsigned x) { return unit_matrix(x, x); } /** Create an r times c matrix of newly generated symbols consisting of the * given base name plus the numeric row/column position of each element. * The base name for LaTeX output is specified separately. */ extern ex symbolic_matrix(unsigned r, unsigned c, const std::string & base_name, const std::string & tex_base_name); /** Return the reduced matrix that is formed by deleting the rth row and cth * column of matrix m. The determinant of the result is the Minor r, c. */ extern ex reduced_matrix(const matrix& m, unsigned r, unsigned c); /** Return the nr times nc submatrix starting at position r, c of matrix m. */ extern ex sub_matrix(const matrix&m, unsigned r, unsigned nr, unsigned c, unsigned nc); /** Create an r times c matrix of newly generated symbols consisting of the * given base name plus the numeric row/column position of each element. */ inline ex symbolic_matrix(unsigned r, unsigned c, const std::string & base_name) { return symbolic_matrix(r, c, base_name, base_name); } } // namespace GiNaC #endif // ndef GINAC_MATRIX_H