/** @file matrix.cpp * * Implementation of symbolic matrices */ /* * GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include "matrix.h" #include "numeric.h" #include "lst.h" #include "idx.h" #include "indexed.h" #include "power.h" #include "symbol.h" #include "normal.h" #include "print.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(matrix, basic) ////////// // default ctor, dtor, copy ctor, assignment operator and helpers: ////////// /** Default ctor. Initializes to 1 x 1-dimensional zero-matrix. */ matrix::matrix() : inherited(TINFO_matrix), row(1), col(1) { m.push_back(_ex0); } void matrix::copy(const matrix & other) { inherited::copy(other); row = other.row; col = other.col; m = other.m; // STL's vector copying invoked here } DEFAULT_DESTROY(matrix) ////////// // other ctors ////////// // public /** Very common ctor. Initializes to r x c-dimensional zero-matrix. * * @param r number of rows * @param c number of cols */ matrix::matrix(unsigned r, unsigned c) : inherited(TINFO_matrix), row(r), col(c) { m.resize(r*c, _ex0); } // protected /** Ctor from representation, for internal use only. */ matrix::matrix(unsigned r, unsigned c, const exvector & m2) : inherited(TINFO_matrix), row(r), col(c), m(m2) {} /** Construct matrix from (flat) list of elements. If the list has fewer * elements than the matrix, the remaining matrix elements are set to zero. * If the list has more elements than the matrix, the excessive elements are * thrown away. */ matrix::matrix(unsigned r, unsigned c, const lst & l) : inherited(TINFO_matrix), row(r), col(c) { m.resize(r*c, _ex0); for (unsigned i=0; i= r) break; // matrix smaller than list: throw away excessive elements m[y*c+x] = l.op(i); } } ////////// // archiving ////////// matrix::matrix(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col))) throw (std::runtime_error("unknown matrix dimensions in archive")); m.reserve(row * col); for (unsigned int i=0; true; i++) { ex e; if (n.find_ex("m", e, sym_lst, i)) m.push_back(e); else break; } } void matrix::archive(archive_node &n) const { inherited::archive(n); n.add_unsigned("row", row); n.add_unsigned("col", col); exvector::const_iterator i = m.begin(), iend = m.end(); while (i != iend) { n.add_ex("m", *i); ++i; } } DEFAULT_UNARCHIVE(matrix) ////////// // functions overriding virtual functions from base classes ////////// // public void matrix::print(const print_context & c, unsigned level) const { if (is_a(c)) { inherited::print(c, level); } else { if (is_a(c)) c.s << class_name() << '('; if (is_a(c)) c.s << "\\left(\\begin{array}{" << std::string(col,'c') << "}"; else c.s << "["; for (unsigned ro=0; ro(c)) c.s << "["; for (unsigned co=0; co(c)) c.s << "&"; else c.s << ","; } else { if (!is_a(c)) c.s << "]"; } } if (ro(c)) c.s << "\\\\"; else c.s << ","; } } if (is_a(c)) c.s << "\\end{array}\\right)"; else c.s << "]"; if (is_a(c)) c.s << ')'; } } /** nops is defined to be rows x columns. */ unsigned matrix::nops() const { return row*col; } /** returns matrix entry at position (i/col, i%col). */ ex matrix::op(int i) const { return m[i]; } /** returns matrix entry at position (i/col, i%col). */ ex & matrix::let_op(int i) { GINAC_ASSERT(i>=0); GINAC_ASSERT(isetflag(status_flags::dynallocated | status_flags::evaluated ); } ex matrix::subs(const lst & ls, const lst & lr, bool no_pattern) const { exvector m2(row * col); for (unsigned r=0; r(other)); const matrix &o = static_cast(other); // compare number of rows if (row != o.rows()) return row < o.rows() ? -1 : 1; // compare number of columns if (col != o.cols()) return col < o.cols() ? -1 : 1; // equal number of rows and columns, compare individual elements int cmpval; for (unsigned r=0; r matrices are equal; return 0; } bool matrix::match_same_type(const basic & other) const { GINAC_ASSERT(is_exactly_a(other)); const matrix & o = static_cast(other); // The number of rows and columns must be the same. This is necessary to // prevent a 2x3 matrix from matching a 3x2 one. return row == o.rows() && col == o.cols(); } /** Automatic symbolic evaluation of an indexed matrix. */ ex matrix::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(is_a(i.op(0))); bool all_indices_unsigned = static_cast(i).all_index_values_are(info_flags::nonnegint); // Check indices if (i.nops() == 2) { // One index, must be one-dimensional vector if (row != 1 && col != 1) throw (std::runtime_error("matrix::eval_indexed(): vector must have exactly 1 index")); const idx & i1 = ex_to(i.op(1)); if (col == 1) { // Column vector if (!i1.get_dim().is_equal(row)) throw (std::runtime_error("matrix::eval_indexed(): dimension of index must match number of vector elements")); // Index numeric -> return vector element if (all_indices_unsigned) { unsigned n1 = ex_to(i1.get_value()).to_int(); if (n1 >= row) throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements")); return (*this)(n1, 0); } } else { // Row vector if (!i1.get_dim().is_equal(col)) throw (std::runtime_error("matrix::eval_indexed(): dimension of index must match number of vector elements")); // Index numeric -> return vector element if (all_indices_unsigned) { unsigned n1 = ex_to(i1.get_value()).to_int(); if (n1 >= col) throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements")); return (*this)(0, n1); } } } else if (i.nops() == 3) { // Two indices const idx & i1 = ex_to(i.op(1)); const idx & i2 = ex_to(i.op(2)); if (!i1.get_dim().is_equal(row)) throw (std::runtime_error("matrix::eval_indexed(): dimension of first index must match number of rows")); if (!i2.get_dim().is_equal(col)) throw (std::runtime_error("matrix::eval_indexed(): dimension of second index must match number of columns")); // Pair of dummy indices -> compute trace if (is_dummy_pair(i1, i2)) return trace(); // Both indices numeric -> return matrix element if (all_indices_unsigned) { unsigned n1 = ex_to(i1.get_value()).to_int(), n2 = ex_to(i2.get_value()).to_int(); if (n1 >= row) throw (std::runtime_error("matrix::eval_indexed(): value of first index exceeds number of rows")); if (n2 >= col) throw (std::runtime_error("matrix::eval_indexed(): value of second index exceeds number of columns")); return (*this)(n1, n2); } } else throw (std::runtime_error("matrix::eval_indexed(): matrix must have exactly 2 indices")); return i.hold(); } /** Sum of two indexed matrices. */ ex matrix::add_indexed(const ex & self, const ex & other) const { GINAC_ASSERT(is_a(self)); GINAC_ASSERT(is_a(self.op(0))); GINAC_ASSERT(is_a(other)); GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); // Only add two matrices if (is_ex_of_type(other.op(0), matrix)) { GINAC_ASSERT(other.nops() == 2 || other.nops() == 3); const matrix &self_matrix = ex_to(self.op(0)); const matrix &other_matrix = ex_to(other.op(0)); if (self.nops() == 2 && other.nops() == 2) { // vector + vector if (self_matrix.row == other_matrix.row) return indexed(self_matrix.add(other_matrix), self.op(1)); else if (self_matrix.row == other_matrix.col) return indexed(self_matrix.add(other_matrix.transpose()), self.op(1)); } else if (self.nops() == 3 && other.nops() == 3) { // matrix + matrix if (self.op(1).is_equal(other.op(1)) && self.op(2).is_equal(other.op(2))) return indexed(self_matrix.add(other_matrix), self.op(1), self.op(2)); else if (self.op(1).is_equal(other.op(2)) && self.op(2).is_equal(other.op(1))) return indexed(self_matrix.add(other_matrix.transpose()), self.op(1), self.op(2)); } } // Don't know what to do, return unevaluated sum return self + other; } /** Product of an indexed matrix with a number. */ ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const { GINAC_ASSERT(is_a(self)); GINAC_ASSERT(is_a(self.op(0))); GINAC_ASSERT(self.nops() == 2 || self.nops() == 3); const matrix &self_matrix = ex_to(self.op(0)); if (self.nops() == 2) return indexed(self_matrix.mul(other), self.op(1)); else // self.nops() == 3 return indexed(self_matrix.mul(other), self.op(1), self.op(2)); } /** Contraction of an indexed matrix with something else. */ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 2 || self->nops() == 3); GINAC_ASSERT(is_a(self->op(0))); // Only contract with other matrices if (!is_ex_of_type(other->op(0), matrix)) return false; GINAC_ASSERT(other->nops() == 2 || other->nops() == 3); const matrix &self_matrix = ex_to(self->op(0)); const matrix &other_matrix = ex_to(other->op(0)); if (self->nops() == 2) { if (other->nops() == 2) { // vector * vector (scalar product) if (self_matrix.col == 1) { if (other_matrix.col == 1) { // Column vector * column vector, transpose first vector *self = self_matrix.transpose().mul(other_matrix)(0, 0); } else { // Column vector * row vector, swap factors *self = other_matrix.mul(self_matrix)(0, 0); } } else { if (other_matrix.col == 1) { // Row vector * column vector, perfect *self = self_matrix.mul(other_matrix)(0, 0); } else { // Row vector * row vector, transpose second vector *self = self_matrix.mul(other_matrix.transpose())(0, 0); } } *other = _ex1; return true; } else { // vector * matrix // B_i * A_ij = (B*A)_j (B is row vector) if (is_dummy_pair(self->op(1), other->op(1))) { if (self_matrix.row == 1) *self = indexed(self_matrix.mul(other_matrix), other->op(2)); else *self = indexed(self_matrix.transpose().mul(other_matrix), other->op(2)); *other = _ex1; return true; } // B_j * A_ij = (A*B)_i (B is column vector) if (is_dummy_pair(self->op(1), other->op(2))) { if (self_matrix.col == 1) *self = indexed(other_matrix.mul(self_matrix), other->op(1)); else *self = indexed(other_matrix.mul(self_matrix.transpose()), other->op(1)); *other = _ex1; return true; } } } else if (other->nops() == 3) { // matrix * matrix // A_ij * B_jk = (A*B)_ik if (is_dummy_pair(self->op(2), other->op(1))) { *self = indexed(self_matrix.mul(other_matrix), self->op(1), other->op(2)); *other = _ex1; return true; } // A_ij * B_kj = (A*Btrans)_ik if (is_dummy_pair(self->op(2), other->op(2))) { *self = indexed(self_matrix.mul(other_matrix.transpose()), self->op(1), other->op(1)); *other = _ex1; return true; } // A_ji * B_jk = (Atrans*B)_ik if (is_dummy_pair(self->op(1), other->op(1))) { *self = indexed(self_matrix.transpose().mul(other_matrix), self->op(2), other->op(2)); *other = _ex1; return true; } // A_ji * B_kj = (B*A)_ki if (is_dummy_pair(self->op(1), other->op(2))) { *self = indexed(other_matrix.mul(self_matrix), other->op(1), self->op(2)); *other = _ex1; return true; } } return false; } ////////// // non-virtual functions in this class ////////// // public /** Sum of matrices. * * @exception logic_error (incompatible matrices) */ matrix matrix::add(const matrix & other) const { if (col != other.col || row != other.row) throw std::logic_error("matrix::add(): incompatible matrices"); exvector sum(this->m); exvector::iterator i = sum.begin(), end = sum.end(); exvector::const_iterator ci = other.m.begin(); while (i != end) *i++ += *ci++; return matrix(row,col,sum); } /** Difference of matrices. * * @exception logic_error (incompatible matrices) */ matrix matrix::sub(const matrix & other) const { if (col != other.col || row != other.row) throw std::logic_error("matrix::sub(): incompatible matrices"); exvector dif(this->m); exvector::iterator i = dif.begin(), end = dif.end(); exvector::const_iterator ci = other.m.begin(); while (i != end) *i++ -= *ci++; return matrix(row,col,dif); } /** Product of matrices. * * @exception logic_error (incompatible matrices) */ matrix matrix::mul(const matrix & other) const { if (this->cols() != other.rows()) throw std::logic_error("matrix::mul(): incompatible matrices"); exvector prod(this->rows()*other.cols()); for (unsigned r1=0; r1rows(); ++r1) { for (unsigned c=0; ccols(); ++c) { if (m[r1*col+c].is_zero()) continue; for (unsigned r2=0; r2(expn); matrix A(row,col); if (expn.info(info_flags::negative)) { b *= -1; A = this->inverse(); } else { A = *this; } matrix C(row,col); for (unsigned r=0; r=row || co>=col) throw (std::range_error("matrix::operator(): index out of range")); return m[ro*col+co]; } /** operator() to access elements for writing. * * @param ro row of element * @param co column of element * @exception range_error (index out of range) */ ex & matrix::operator() (unsigned ro, unsigned co) { if (ro>=row || co>=col) throw (std::range_error("matrix::operator(): index out of range")); ensure_if_modifiable(); return m[ro*col+co]; } /** Transposed of an m x n matrix, producing a new n x m matrix object that * represents the transposed. */ matrix matrix::transpose(void) const { exvector trans(this->cols()*this->rows()); for (unsigned r=0; rcols(); ++r) for (unsigned c=0; crows(); ++c) trans[r*this->rows()+c] = m[c*this->cols()+r]; return matrix(this->cols(),this->rows(),trans); } /** Determinant of square matrix. This routine doesn't actually calculate the * determinant, it only implements some heuristics about which algorithm to * run. If all the elements of the matrix are elements of an integral domain * the determinant is also in that integral domain and the result is expanded * only. If one or more elements are from a quotient field the determinant is * usually also in that quotient field and the result is normalized before it * is returned. This implies that the determinant of the symbolic 2x2 matrix * [[a/(a-b),1],[b/(a-b),1]] is returned as unity. (In this respect, it * behaves like MapleV and unlike Mathematica.) * * @param algo allows to chose an algorithm * @return the determinant as a new expression * @exception logic_error (matrix not square) * @see determinant_algo */ ex matrix::determinant(unsigned algo) const { if (row!=col) throw (std::logic_error("matrix::determinant(): matrix not square")); GINAC_ASSERT(row*col==m.capacity()); // Gather some statistical information about this matrix: bool numeric_flag = true; bool normal_flag = false; unsigned sparse_count = 0; // counts non-zero elements exvector::const_iterator r = m.begin(), rend = m.end(); while (r != rend) { lst srl; // symbol replacement list ex rtest = r->to_rational(srl); if (!rtest.is_zero()) ++sparse_count; if (!rtest.info(info_flags::numeric)) numeric_flag = false; if (!rtest.info(info_flags::crational_polynomial) && rtest.info(info_flags::rational_function)) normal_flag = true; ++r; } // Here is the heuristics in case this routine has to decide: if (algo == determinant_algo::automatic) { // Minor expansion is generally a good guess: algo = determinant_algo::laplace; // Does anybody know when a matrix is really sparse? // Maybe <~row/2.236 nonzero elements average in a row? if (row>3 && 5*sparse_count<=row*col) algo = determinant_algo::bareiss; // Purely numeric matrix can be handled by Gauss elimination. // This overrides any prior decisions. if (numeric_flag) algo = determinant_algo::gauss; } // Trap the trivial case here, since some algorithms don't like it if (this->row==1) { // for consistency with non-trivial determinants... if (normal_flag) return m[0].normal(); else return m[0].expand(); } // Compute the determinant switch(algo) { case determinant_algo::gauss: { ex det = 1; matrix tmp(*this); int sign = tmp.gauss_elimination(true); for (unsigned d=0; d uintpair; std::vector c_zeros; // number of zeros in column for (unsigned c=0; c pre_sort; for (std::vector::const_iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i) pre_sort.push_back(i->second); std::vector pre_sort_test(pre_sort); // permutation_sign() modifies the vector so we make a copy here int sign = permutation_sign(pre_sort_test.begin(), pre_sort_test.end()); exvector result(row*col); // represents sorted matrix unsigned c = 0; for (std::vector::const_iterator i=pre_sort.begin(); i!=pre_sort.end(); ++i,++c) { for (unsigned r=0; rinfo(info_flags::numeric)) numeric_flag = false; ++r; } // The pure numeric case is traditionally rather common. Hence, it is // trapped and we use Leverrier's algorithm which goes as row^3 for // every coefficient. The expensive part is the matrix multiplication. if (numeric_flag) { matrix B(*this); ex c = B.trace(); ex poly = power(lambda,row)-c*power(lambda,row-1); for (unsigned i=1; imul(B); c = B.trace()/ex(i+1); poly -= c*power(lambda,row-i-1); } if (row%2) return -poly; else return poly; } matrix M(*this); for (unsigned r=0; rsolve(vars,identity); } catch (const std::runtime_error & e) { if (e.what()==std::string("matrix::solve(): inconsistent linear system")) throw (std::runtime_error("matrix::inverse(): singular matrix")); else throw; } return sol; } /** Solve a linear system consisting of a m x n matrix and a m x p right hand * side by applying an elimination scheme to the augmented matrix. * * @param vars n x p matrix, all elements must be symbols * @param rhs m x p matrix * @return n x p solution matrix * @exception logic_error (incompatible matrices) * @exception invalid_argument (1st argument must be matrix of symbols) * @exception runtime_error (inconsistent linear system) * @see solve_algo */ matrix matrix::solve(const matrix & vars, const matrix & rhs, unsigned algo) const { const unsigned m = this->rows(); const unsigned n = this->cols(); const unsigned p = rhs.cols(); // syntax checks if ((rhs.rows() != m) || (vars.rows() != n) || (vars.col != p)) throw (std::logic_error("matrix::solve(): incompatible matrices")); for (unsigned ro=0; rom[r*n+c]; for (unsigned c=0; cinfo(info_flags::numeric)) numeric_flag = false; ++r; } // Here is the heuristics in case this routine has to decide: if (algo == solve_algo::automatic) { // Bareiss (fraction-free) elimination is generally a good guess: algo = solve_algo::bareiss; // For m<3, Bareiss elimination is equivalent to division free // elimination but has more logistic overhead if (m<3) algo = solve_algo::divfree; // This overrides any prior decisions. if (numeric_flag) algo = solve_algo::gauss; } // Eliminate the augmented matrix: switch(algo) { case solve_algo::gauss: aug.gauss_elimination(); break; case solve_algo::divfree: aug.division_free_elimination(); break; case solve_algo::bareiss: default: aug.fraction_free_elimination(); } // assemble the solution matrix: matrix sol(n,p); for (unsigned co=0; co=0; --r) { unsigned fnz = 1; // first non-zero in row while ((fnz<=n) && (aug.m[r*(n+p)+(fnz-1)].is_zero())) ++fnz; if (fnz>n) { // row consists only of zeros, corresponding rhs must be 0, too if (!aug.m[r*(n+p)+n+co].is_zero()) { throw (std::runtime_error("matrix::solve(): inconsistent linear system")); } } else { // assign solutions for vars between fnz+1 and // last_assigned_sol-1: free parameters for (unsigned c=fnz; ccols(); if (n==1) return m[0].expand(); if (n==2) return (m[0]*m[3]-m[2]*m[1]).expand(); if (n==3) return (m[0]*m[4]*m[8]-m[0]*m[5]*m[7]- m[1]*m[3]*m[8]+m[2]*m[3]*m[7]+ m[1]*m[5]*m[6]-m[2]*m[4]*m[6]).expand(); // This algorithm can best be understood by looking at a naive // implementation of Laplace-expansion, like this one: // ex det; // matrix minorM(this->rows()-1,this->cols()-1); // for (unsigned r1=0; r1rows(); ++r1) { // // shortcut if element(r1,0) vanishes // if (m[r1*col].is_zero()) // continue; // // assemble the minor matrix // for (unsigned r=0; r Pkey; Pkey.reserve(n); // key for minor determinant (a subpartition of Pkey) std::vector Mkey; Mkey.reserve(n-1); // we store our subminors in maps, keys being the rows they arise from typedef std::map,class ex> Rmap; typedef std::map,class ex>::value_type Rmap_value; Rmap A; Rmap B; ex det; // initialize A with last column: for (unsigned r=0; r=0; --c) { Pkey.erase(Pkey.begin(),Pkey.end()); // don't change capacity Mkey.erase(Mkey.begin(),Mkey.end()); for (unsigned i=0; i0; --fc) { ++Pkey[fc-1]; if (Pkey[fc-1]0) for (unsigned j=fc; jrows(); const unsigned n = this->cols(); GINAC_ASSERT(!det || n==m); int sign = 1; unsigned r0 = 0; for (unsigned r1=0; (r1=0) { if (indx > 0) sign = -sign; for (unsigned r2=r0+1; r2m[r2*n+r1].is_zero()) { // yes, there is something to do in this row ex piv = this->m[r2*n+r1] / this->m[r0*n+r1]; for (unsigned c=r1+1; cm[r2*n+c] -= piv * this->m[r0*n+c]; if (!this->m[r2*n+c].info(info_flags::numeric)) this->m[r2*n+c] = this->m[r2*n+c].normal(); } } // fill up left hand side with zeros for (unsigned c=0; c<=r1; ++c) this->m[r2*n+c] = _ex0; } if (det) { // save space by deleting no longer needed elements for (unsigned c=r0+1; cm[r0*n+c] = _ex0; } ++r0; } } return sign; } /** Perform the steps of division free elimination to bring the m x n matrix * into an upper echelon form. * * @param det may be set to true to save a lot of space if one is only * interested in the diagonal elements (i.e. for calculating determinants). * The others are set to zero in this case. * @return sign is 1 if an even number of rows was swapped, -1 if an odd * number of rows was swapped and 0 if the matrix is singular. */ int matrix::division_free_elimination(const bool det) { ensure_if_modifiable(); const unsigned m = this->rows(); const unsigned n = this->cols(); GINAC_ASSERT(!det || n==m); int sign = 1; unsigned r0 = 0; for (unsigned r1=0; (r1=0) { if (indx>0) sign = -sign; for (unsigned r2=r0+1; r2m[r2*n+c] = (this->m[r0*n+r1]*this->m[r2*n+c] - this->m[r2*n+r1]*this->m[r0*n+c]).expand(); // fill up left hand side with zeros for (unsigned c=0; c<=r1; ++c) this->m[r2*n+c] = _ex0; } if (det) { // save space by deleting no longer needed elements for (unsigned c=r0+1; cm[r0*n+c] = _ex0; } ++r0; } } return sign; } /** Perform the steps of Bareiss' one-step fraction free elimination to bring * the matrix into an upper echelon form. Fraction free elimination means * that divide is used straightforwardly, without computing GCDs first. This * is possible, since we know the divisor at each step. * * @param det may be set to true to save a lot of space if one is only * interested in the last element (i.e. for calculating determinants). The * others are set to zero in this case. * @return sign is 1 if an even number of rows was swapped, -1 if an odd * number of rows was swapped and 0 if the matrix is singular. */ int matrix::fraction_free_elimination(const bool det) { // Method: // (single-step fraction free elimination scheme, already known to Jordan) // // Usual division-free elimination sets m[0](r,c) = m(r,c) and then sets // m[k+1](r,c) = m[k](k,k) * m[k](r,c) - m[k](r,k) * m[k](k,c). // // Bareiss (fraction-free) elimination in addition divides that element // by m[k-1](k-1,k-1) for k>1, where it can be shown by means of the // Sylvester determinant that this really divides m[k+1](r,c). // // We also allow rational functions where the original prove still holds. // However, we must care for numerator and denominator separately and // "manually" work in the integral domains because of subtle cancellations // (see below). This blows up the bookkeeping a bit and the formula has // to be modified to expand like this (N{x} stands for numerator of x, // D{x} for denominator of x): // N{m[k+1](r,c)} = N{m[k](k,k)}*N{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} // -N{m[k](r,k)}*N{m[k](k,c)}*D{m[k](k,k)}*D{m[k](r,c)} // D{m[k+1](r,c)} = D{m[k](k,k)}*D{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)} // where for k>1 we now divide N{m[k+1](r,c)} by // N{m[k-1](k-1,k-1)} // and D{m[k+1](r,c)} by // D{m[k-1](k-1,k-1)}. ensure_if_modifiable(); const unsigned m = this->rows(); const unsigned n = this->cols(); GINAC_ASSERT(!det || n==m); int sign = 1; if (m==1) return 1; ex divisor_n = 1; ex divisor_d = 1; ex dividend_n; ex dividend_d; // We populate temporary matrices to subsequently operate on. There is // one holding numerators and another holding denominators of entries. // This is a must since the evaluator (or even earlier mul's constructor) // might cancel some trivial element which causes divide() to fail. The // elements are normalized first (yes, even though this algorithm doesn't // need GCDs) since the elements of *this might be unnormalized, which // makes things more complicated than they need to be. matrix tmp_n(*this); matrix tmp_d(m,n); // for denominators, if needed lst srl; // symbol replacement list exvector::const_iterator cit = this->m.begin(), citend = this->m.end(); exvector::iterator tmp_n_it = tmp_n.m.begin(), tmp_d_it = tmp_d.m.begin(); while (cit != citend) { ex nd = cit->normal().to_rational(srl).numer_denom(); ++cit; *tmp_n_it++ = nd.op(0); *tmp_d_it++ = nd.op(1); } unsigned r0 = 0; for (unsigned r1=0; (r1=0) { if (indx>0) { sign = -sign; // tmp_n's rows r0 and indx were swapped, do the same in tmp_d: for (unsigned c=r1; cm.begin(), itend = this->m.end(); tmp_n_it = tmp_n.m.begin(); tmp_d_it = tmp_d.m.begin(); while (it != itend) *it++ = ((*tmp_n_it++)/(*tmp_d_it++)).subs(srl); return sign; } /** Partial pivoting method for matrix elimination schemes. * Usual pivoting (symbolic==false) returns the index to the element with the * largest absolute value in column ro and swaps the current row with the one * where the element was found. With (symbolic==true) it does the same thing * with the first non-zero element. * * @param ro is the row from where to begin * @param co is the column to be inspected * @param symbolic signal if we want the first non-zero element to be pivoted * (true) or the one with the largest absolute value (false). * @return 0 if no interchange occured, -1 if all are zero (usually signaling * a degeneracy) and positive integer k means that rows ro and k were swapped. */ int matrix::pivot(unsigned ro, unsigned co, bool symbolic) { unsigned k = ro; if (symbolic) { // search first non-zero element in column co beginning at row ro while ((km[k*col+co].expand().is_zero())) ++k; } else { // search largest element in column co beginning at row ro GINAC_ASSERT(is_a(this->m[k*col+co])); unsigned kmax = k+1; numeric mmax = abs(ex_to(m[kmax*col+co])); while (kmax(this->m[kmax*col+co])); numeric tmp = ex_to(this->m[kmax*col+co]); if (abs(tmp) > mmax) { mmax = tmp; k = kmax; } ++kmax; } if (!mmax.is_zero()) k = kmax; } if (k==row) // all elements in column co below row ro vanish return -1; if (k==ro) // matrix needs no pivoting return 0; // matrix needs pivoting, so swap rows k and ro ensure_if_modifiable(); for (unsigned c=0; cm[k*col+c].swap(this->m[ro*col+c]); return k; } ex lst_to_matrix(const lst & l) { // Find number of rows and columns unsigned rows = l.nops(), cols = 0, i, j; for (i=0; i cols) cols = l.op(i).nops(); // Allocate and fill matrix matrix &m = *new matrix(rows, cols); m.setflag(status_flags::dynallocated); for (i=0; i j) m(i, j) = l.op(i).op(j); else m(i, j) = _ex0; return m; } ex diag_matrix(const lst & l) { unsigned dim = l.nops(); matrix &m = *new matrix(dim, dim); m.setflag(status_flags::dynallocated); for (unsigned i=0; i