/** @file inifcns_trans.cpp * * Implementation of transcendental (and trigonometric and hyperbolic) * functions. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "inifcns.h" #include "ex.h" #include "constant.h" #include "numeric.h" #include "power.h" #include "relational.h" #include "symbol.h" #include "pseries.h" #include "utils.h" namespace GiNaC { ////////// // exponential function ////////// static ex exp_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(exp(x)) return exp(ex_to(x)); // -> numeric exp(numeric) } static ex exp_eval(const ex & x) { // exp(0) -> 1 if (x.is_zero()) { return _ex1(); } // exp(n*Pi*I/2) -> {+1|+I|-1|-I} ex TwoExOverPiI=(_ex2()*x)/(Pi*I); if (TwoExOverPiI.info(info_flags::integer)) { numeric z=mod(ex_to(TwoExOverPiI),_num4()); if (z.is_equal(_num0())) return _ex1(); if (z.is_equal(_num1())) return ex(I); if (z.is_equal(_num2())) return _ex_1(); if (z.is_equal(_num3())) return ex(-I); } // exp(log(x)) -> x if (is_ex_the_function(x, log)) return x.op(0); // exp(float) if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return exp_evalf(x); return exp(x).hold(); } static ex exp_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx exp(x) -> exp(x) return exp(x); } REGISTER_FUNCTION(exp, eval_func(exp_eval). evalf_func(exp_evalf). derivative_func(exp_deriv). latex_name("\\exp")); ////////// // natural logarithm ////////// static ex log_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(log(x)) return log(ex_to(x)); // -> numeric log(numeric) } static ex log_eval(const ex & x) { if (x.info(info_flags::numeric)) { if (x.is_equal(_ex0())) // log(0) -> infinity throw(pole_error("log_eval(): log(0)",0)); if (x.info(info_flags::real) && x.info(info_flags::negative)) return (log(-x)+I*Pi); if (x.is_equal(_ex1())) // log(1) -> 0 return _ex0(); if (x.is_equal(I)) // log(I) -> Pi*I/2 return (Pi*I*_num1_2()); if (x.is_equal(-I)) // log(-I) -> -Pi*I/2 return (Pi*I*_num_1_2()); // log(float) if (!x.info(info_flags::crational)) return log_evalf(x); } // log(exp(t)) -> t (if -Pi < t.imag() <= Pi): if (is_ex_the_function(x, exp)) { ex t = x.op(0); if (t.info(info_flags::numeric)) { numeric nt = ex_to(t); if (nt.is_real()) return t; } } return log(x).hold(); } static ex log_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx log(x) -> 1/x return power(x, _ex_1()); } static ex log_series(const ex &arg, const relational &rel, int order, unsigned options) { GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol)); ex arg_pt; bool must_expand_arg = false; // maybe substitution of rel into arg fails because of a pole try { arg_pt = arg.subs(rel); } catch (pole_error) { must_expand_arg = true; } // or we are at the branch point anyways if (arg_pt.is_zero()) must_expand_arg = true; if (must_expand_arg) { // method: // This is the branch point: Series expand the argument first, then // trivially factorize it to isolate that part which has constant // leading coefficient in this fashion: // x^n + Order(x^(n+m)) -> x^n * (1 + Order(x^m)). // Return a plain n*log(x) for the x^n part and series expand the // other part. Add them together and reexpand again in order to have // one unnested pseries object. All this also works for negative n. const pseries argser = ex_to(arg.series(rel, order, options)); const symbol *s = static_cast(rel.lhs().bp); const ex point = rel.rhs(); const int n = argser.ldegree(*s); epvector seq; // construct what we carelessly called the n*log(x) term above ex coeff = argser.coeff(*s, n); // expand the log, but only if coeff is real and > 0, since otherwise // it would make the branch cut run into the wrong direction if (coeff.info(info_flags::positive)) seq.push_back(expair(n*log(*s-point)+log(coeff), _ex0())); else seq.push_back(expair(log(coeff*pow(*s-point, n)), _ex0())); if (!argser.is_terminating() || argser.nops()!=1) { // in this case n more terms are needed // (sadly, to generate them, we have to start from the beginning) ex newarg = ex_to((arg/coeff).series(rel, order+n, options)).shift_exponents(-n).convert_to_poly(true); return pseries(rel, seq).add_series(ex_to(log(newarg).series(rel, order, options))); } else // it was a monomial return pseries(rel, seq); } if (!(options & series_options::suppress_branchcut) && arg_pt.info(info_flags::negative)) { // method: // This is the branch cut: assemble the primitive series manually and // then add the corresponding complex step function. const symbol *s = static_cast(rel.lhs().bp); const ex point = rel.rhs(); const symbol foo; ex replarg = series(log(arg), *s==foo, order).subs(foo==point); epvector seq; seq.push_back(expair(-I*csgn(arg*I)*Pi, _ex0())); seq.push_back(expair(Order(_ex1()), order)); return series(replarg - I*Pi + pseries(rel, seq), rel, order); } throw do_taylor(); // caught by function::series() } REGISTER_FUNCTION(log, eval_func(log_eval). evalf_func(log_evalf). derivative_func(log_deriv). series_func(log_series). latex_name("\\ln")); ////////// // sine (trigonometric function) ////////// static ex sin_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(sin(x)) return sin(ex_to(x)); // -> numeric sin(numeric) } static ex sin_eval(const ex & x) { // sin(n/d*Pi) -> { all known non-nested radicals } ex SixtyExOverPi = _ex60()*x/Pi; ex sign = _ex1(); if (SixtyExOverPi.info(info_flags::integer)) { numeric z = mod(ex_to(SixtyExOverPi),_num120()); if (z>=_num60()) { // wrap to interval [0, Pi) z -= _num60(); sign = _ex_1(); } if (z>_num30()) { // wrap to interval [0, Pi/2) z = _num60()-z; } if (z.is_equal(_num0())) // sin(0) -> 0 return _ex0(); if (z.is_equal(_num5())) // sin(Pi/12) -> sqrt(6)/4*(1-sqrt(3)/3) return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex_1_3()*power(_ex3(),_ex1_2())); if (z.is_equal(_num6())) // sin(Pi/10) -> sqrt(5)/4-1/4 return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex_1_4()); if (z.is_equal(_num10())) // sin(Pi/6) -> 1/2 return sign*_ex1_2(); if (z.is_equal(_num15())) // sin(Pi/4) -> sqrt(2)/2 return sign*_ex1_2()*power(_ex2(),_ex1_2()); if (z.is_equal(_num18())) // sin(3/10*Pi) -> sqrt(5)/4+1/4 return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex1_4()); if (z.is_equal(_num20())) // sin(Pi/3) -> sqrt(3)/2 return sign*_ex1_2()*power(_ex3(),_ex1_2()); if (z.is_equal(_num25())) // sin(5/12*Pi) -> sqrt(6)/4*(1+sqrt(3)/3) return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex1_3()*power(_ex3(),_ex1_2())); if (z.is_equal(_num30())) // sin(Pi/2) -> 1 return sign*_ex1(); } if (is_ex_exactly_of_type(x, function)) { ex t = x.op(0); // sin(asin(x)) -> x if (is_ex_the_function(x, asin)) return t; // sin(acos(x)) -> sqrt(1-x^2) if (is_ex_the_function(x, acos)) return power(_ex1()-power(t,_ex2()),_ex1_2()); // sin(atan(x)) -> x*(1+x^2)^(-1/2) if (is_ex_the_function(x, atan)) return t*power(_ex1()+power(t,_ex2()),_ex_1_2()); } // sin(float) -> float if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return sin_evalf(x); return sin(x).hold(); } static ex sin_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx sin(x) -> cos(x) return cos(x); } REGISTER_FUNCTION(sin, eval_func(sin_eval). evalf_func(sin_evalf). derivative_func(sin_deriv). latex_name("\\sin")); ////////// // cosine (trigonometric function) ////////// static ex cos_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(cos(x)) return cos(ex_to(x)); // -> numeric cos(numeric) } static ex cos_eval(const ex & x) { // cos(n/d*Pi) -> { all known non-nested radicals } ex SixtyExOverPi = _ex60()*x/Pi; ex sign = _ex1(); if (SixtyExOverPi.info(info_flags::integer)) { numeric z = mod(ex_to(SixtyExOverPi),_num120()); if (z>=_num60()) { // wrap to interval [0, Pi) z = _num120()-z; } if (z>=_num30()) { // wrap to interval [0, Pi/2) z = _num60()-z; sign = _ex_1(); } if (z.is_equal(_num0())) // cos(0) -> 1 return sign*_ex1(); if (z.is_equal(_num5())) // cos(Pi/12) -> sqrt(6)/4*(1+sqrt(3)/3) return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex1_3()*power(_ex3(),_ex1_2())); if (z.is_equal(_num10())) // cos(Pi/6) -> sqrt(3)/2 return sign*_ex1_2()*power(_ex3(),_ex1_2()); if (z.is_equal(_num12())) // cos(Pi/5) -> sqrt(5)/4+1/4 return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex1_4()); if (z.is_equal(_num15())) // cos(Pi/4) -> sqrt(2)/2 return sign*_ex1_2()*power(_ex2(),_ex1_2()); if (z.is_equal(_num20())) // cos(Pi/3) -> 1/2 return sign*_ex1_2(); if (z.is_equal(_num24())) // cos(2/5*Pi) -> sqrt(5)/4-1/4x return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex_1_4()); if (z.is_equal(_num25())) // cos(5/12*Pi) -> sqrt(6)/4*(1-sqrt(3)/3) return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex_1_3()*power(_ex3(),_ex1_2())); if (z.is_equal(_num30())) // cos(Pi/2) -> 0 return sign*_ex0(); } if (is_ex_exactly_of_type(x, function)) { ex t = x.op(0); // cos(acos(x)) -> x if (is_ex_the_function(x, acos)) return t; // cos(asin(x)) -> (1-x^2)^(1/2) if (is_ex_the_function(x, asin)) return power(_ex1()-power(t,_ex2()),_ex1_2()); // cos(atan(x)) -> (1+x^2)^(-1/2) if (is_ex_the_function(x, atan)) return power(_ex1()+power(t,_ex2()),_ex_1_2()); } // cos(float) -> float if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) return cos_evalf(x); return cos(x).hold(); } static ex cos_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx cos(x) -> -sin(x) return _ex_1()*sin(x); } REGISTER_FUNCTION(cos, eval_func(cos_eval). evalf_func(cos_evalf). derivative_func(cos_deriv). latex_name("\\cos")); ////////// // tangent (trigonometric function) ////////// static ex tan_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(tan(x)) // -> numeric tan(numeric) return tan(ex_to(x)); } static ex tan_eval(const ex & x) { // tan(n/d*Pi) -> { all known non-nested radicals } ex SixtyExOverPi = _ex60()*x/Pi; ex sign = _ex1(); if (SixtyExOverPi.info(info_flags::integer)) { numeric z = mod(ex_to(SixtyExOverPi),_num60()); if (z>=_num60()) { // wrap to interval [0, Pi) z -= _num60(); } if (z>=_num30()) { // wrap to interval [0, Pi/2) z = _num60()-z; sign = _ex_1(); } if (z.is_equal(_num0())) // tan(0) -> 0 return _ex0(); if (z.is_equal(_num5())) // tan(Pi/12) -> 2-sqrt(3) return sign*(_ex2()-power(_ex3(),_ex1_2())); if (z.is_equal(_num10())) // tan(Pi/6) -> sqrt(3)/3 return sign*_ex1_3()*power(_ex3(),_ex1_2()); if (z.is_equal(_num15())) // tan(Pi/4) -> 1 return sign*_ex1(); if (z.is_equal(_num20())) // tan(Pi/3) -> sqrt(3) return sign*power(_ex3(),_ex1_2()); if (z.is_equal(_num25())) // tan(5/12*Pi) -> 2+sqrt(3) return sign*(power(_ex3(),_ex1_2())+_ex2()); if (z.is_equal(_num30())) // tan(Pi/2) -> infinity throw (pole_error("tan_eval(): simple pole",1)); } if (is_ex_exactly_of_type(x, function)) { ex t = x.op(0); // tan(atan(x)) -> x if (is_ex_the_function(x, atan)) return t; // tan(asin(x)) -> x*(1+x^2)^(-1/2) if (is_ex_the_function(x, asin)) return t*power(_ex1()-power(t,_ex2()),_ex_1_2()); // tan(acos(x)) -> (1-x^2)^(1/2)/x if (is_ex_the_function(x, acos)) return power(t,_ex_1())*power(_ex1()-power(t,_ex2()),_ex1_2()); } // tan(float) -> float if (x.info(info_flags::numeric) && !x.info(info_flags::crational)) { return tan_evalf(x); } return tan(x).hold(); } static ex tan_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx tan(x) -> 1+tan(x)^2; return (_ex1()+power(tan(x),_ex2())); } static ex tan_series(const ex &x, const relational &rel, int order, unsigned options) { GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol)); // method: // Taylor series where there is no pole falls back to tan_deriv. // On a pole simply expand sin(x)/cos(x). const ex x_pt = x.subs(rel); if (!(2*x_pt/Pi).info(info_flags::odd)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole return (sin(x)/cos(x)).series(rel, order+2, options); } REGISTER_FUNCTION(tan, eval_func(tan_eval). evalf_func(tan_evalf). derivative_func(tan_deriv). series_func(tan_series). latex_name("\\tan")); ////////// // inverse sine (arc sine) ////////// static ex asin_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(asin(x)) return asin(ex_to(x)); // -> numeric asin(numeric) } static ex asin_eval(const ex & x) { if (x.info(info_flags::numeric)) { // asin(0) -> 0 if (x.is_zero()) return x; // asin(1/2) -> Pi/6 if (x.is_equal(_ex1_2())) return numeric(1,6)*Pi; // asin(1) -> Pi/2 if (x.is_equal(_ex1())) return _num1_2()*Pi; // asin(-1/2) -> -Pi/6 if (x.is_equal(_ex_1_2())) return numeric(-1,6)*Pi; // asin(-1) -> -Pi/2 if (x.is_equal(_ex_1())) return _num_1_2()*Pi; // asin(float) -> float if (!x.info(info_flags::crational)) return asin_evalf(x); } return asin(x).hold(); } static ex asin_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx asin(x) -> 1/sqrt(1-x^2) return power(1-power(x,_ex2()),_ex_1_2()); } REGISTER_FUNCTION(asin, eval_func(asin_eval). evalf_func(asin_evalf). derivative_func(asin_deriv). latex_name("\\arcsin")); ////////// // inverse cosine (arc cosine) ////////// static ex acos_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(acos(x)) return acos(ex_to(x)); // -> numeric acos(numeric) } static ex acos_eval(const ex & x) { if (x.info(info_flags::numeric)) { // acos(1) -> 0 if (x.is_equal(_ex1())) return _ex0(); // acos(1/2) -> Pi/3 if (x.is_equal(_ex1_2())) return _ex1_3()*Pi; // acos(0) -> Pi/2 if (x.is_zero()) return _ex1_2()*Pi; // acos(-1/2) -> 2/3*Pi if (x.is_equal(_ex_1_2())) return numeric(2,3)*Pi; // acos(-1) -> Pi if (x.is_equal(_ex_1())) return Pi; // acos(float) -> float if (!x.info(info_flags::crational)) return acos_evalf(x); } return acos(x).hold(); } static ex acos_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx acos(x) -> -1/sqrt(1-x^2) return _ex_1()*power(1-power(x,_ex2()),_ex_1_2()); } REGISTER_FUNCTION(acos, eval_func(acos_eval). evalf_func(acos_evalf). derivative_func(acos_deriv). latex_name("\\arccos")); ////////// // inverse tangent (arc tangent) ////////// static ex atan_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(atan(x)) return atan(ex_to(x)); // -> numeric atan(numeric) } static ex atan_eval(const ex & x) { if (x.info(info_flags::numeric)) { // atan(0) -> 0 if (x.is_equal(_ex0())) return _ex0(); // atan(1) -> Pi/4 if (x.is_equal(_ex1())) return _ex1_4()*Pi; // atan(-1) -> -Pi/4 if (x.is_equal(_ex_1())) return _ex_1_4()*Pi; if (x.is_equal(I) || x.is_equal(-I)) throw (pole_error("atan_eval(): logarithmic pole",0)); // atan(float) -> float if (!x.info(info_flags::crational)) return atan_evalf(x); } return atan(x).hold(); } static ex atan_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx atan(x) -> 1/(1+x^2) return power(_ex1()+power(x,_ex2()), _ex_1()); } static ex atan_series(const ex &arg, const relational &rel, int order, unsigned options) { GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol)); // method: // Taylor series where there is no pole or cut falls back to atan_deriv. // There are two branch cuts, one runnig from I up the imaginary axis and // one running from -I down the imaginary axis. The points I and -I are // poles. // On the branch cuts and the poles series expand // (log(1+I*x)-log(1-I*x))/(2*I) // instead. const ex arg_pt = arg.subs(rel); if (!(I*arg_pt).info(info_flags::real)) throw do_taylor(); // Re(x) != 0 if ((I*arg_pt).info(info_flags::real) && abs(I*arg_pt)<_ex1()) throw do_taylor(); // Re(x) == 0, but abs(x)<1 // care for the poles, using the defining formula for atan()... if (arg_pt.is_equal(I) || arg_pt.is_equal(-I)) return ((log(1+I*arg)-log(1-I*arg))/(2*I)).series(rel, order, options); if (!(options & series_options::suppress_branchcut)) { // method: // This is the branch cut: assemble the primitive series manually and // then add the corresponding complex step function. const symbol *s = static_cast(rel.lhs().bp); const ex point = rel.rhs(); const symbol foo; ex replarg = series(atan(arg), *s==foo, order).subs(foo==point); ex Order0correction = replarg.op(0)+csgn(arg)*Pi*_ex_1_2(); if ((I*arg_pt)<_ex0()) Order0correction += log((I*arg_pt+_ex_1())/(I*arg_pt+_ex1()))*I*_ex_1_2(); else Order0correction += log((I*arg_pt+_ex1())/(I*arg_pt+_ex_1()))*I*_ex1_2(); epvector seq; seq.push_back(expair(Order0correction, _ex0())); seq.push_back(expair(Order(_ex1()), order)); return series(replarg - pseries(rel, seq), rel, order); } throw do_taylor(); } REGISTER_FUNCTION(atan, eval_func(atan_eval). evalf_func(atan_evalf). derivative_func(atan_deriv). series_func(atan_series). latex_name("\\arctan")); ////////// // inverse tangent (atan2(y,x)) ////////// static ex atan2_evalf(const ex & y, const ex & x) { BEGIN_TYPECHECK TYPECHECK(y,numeric) TYPECHECK(x,numeric) END_TYPECHECK(atan2(y,x)) return atan(ex_to(y),ex_to(x)); // -> numeric atan(numeric) } static ex atan2_eval(const ex & y, const ex & x) { if (y.info(info_flags::numeric) && !y.info(info_flags::crational) && x.info(info_flags::numeric) && !x.info(info_flags::crational)) { return atan2_evalf(y,x); } return atan2(y,x).hold(); } static ex atan2_deriv(const ex & y, const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param<2); if (deriv_param==0) { // d/dy atan(y,x) return x*power(power(x,_ex2())+power(y,_ex2()),_ex_1()); } // d/dx atan(y,x) return -y*power(power(x,_ex2())+power(y,_ex2()),_ex_1()); } REGISTER_FUNCTION(atan2, eval_func(atan2_eval). evalf_func(atan2_evalf). derivative_func(atan2_deriv)); ////////// // hyperbolic sine (trigonometric function) ////////// static ex sinh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(sinh(x)) return sinh(ex_to(x)); // -> numeric sinh(numeric) } static ex sinh_eval(const ex & x) { if (x.info(info_flags::numeric)) { if (x.is_zero()) // sinh(0) -> 0 return _ex0(); if (!x.info(info_flags::crational)) // sinh(float) -> float return sinh_evalf(x); } if ((x/Pi).info(info_flags::numeric) && ex_to(x/Pi).real().is_zero()) // sinh(I*x) -> I*sin(x) return I*sin(x/I); if (is_ex_exactly_of_type(x, function)) { ex t = x.op(0); // sinh(asinh(x)) -> x if (is_ex_the_function(x, asinh)) return t; // sinh(acosh(x)) -> (x-1)^(1/2) * (x+1)^(1/2) if (is_ex_the_function(x, acosh)) return power(t-_ex1(),_ex1_2())*power(t+_ex1(),_ex1_2()); // sinh(atanh(x)) -> x*(1-x^2)^(-1/2) if (is_ex_the_function(x, atanh)) return t*power(_ex1()-power(t,_ex2()),_ex_1_2()); } return sinh(x).hold(); } static ex sinh_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx sinh(x) -> cosh(x) return cosh(x); } REGISTER_FUNCTION(sinh, eval_func(sinh_eval). evalf_func(sinh_evalf). derivative_func(sinh_deriv). latex_name("\\sinh")); ////////// // hyperbolic cosine (trigonometric function) ////////// static ex cosh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(cosh(x)) return cosh(ex_to(x)); // -> numeric cosh(numeric) } static ex cosh_eval(const ex & x) { if (x.info(info_flags::numeric)) { if (x.is_zero()) // cosh(0) -> 1 return _ex1(); if (!x.info(info_flags::crational)) // cosh(float) -> float return cosh_evalf(x); } if ((x/Pi).info(info_flags::numeric) && ex_to(x/Pi).real().is_zero()) // cosh(I*x) -> cos(x) return cos(x/I); if (is_ex_exactly_of_type(x, function)) { ex t = x.op(0); // cosh(acosh(x)) -> x if (is_ex_the_function(x, acosh)) return t; // cosh(asinh(x)) -> (1+x^2)^(1/2) if (is_ex_the_function(x, asinh)) return power(_ex1()+power(t,_ex2()),_ex1_2()); // cosh(atanh(x)) -> (1-x^2)^(-1/2) if (is_ex_the_function(x, atanh)) return power(_ex1()-power(t,_ex2()),_ex_1_2()); } return cosh(x).hold(); } static ex cosh_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx cosh(x) -> sinh(x) return sinh(x); } REGISTER_FUNCTION(cosh, eval_func(cosh_eval). evalf_func(cosh_evalf). derivative_func(cosh_deriv). latex_name("\\cosh")); ////////// // hyperbolic tangent (trigonometric function) ////////// static ex tanh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(tanh(x)) return tanh(ex_to(x)); // -> numeric tanh(numeric) } static ex tanh_eval(const ex & x) { if (x.info(info_flags::numeric)) { if (x.is_zero()) // tanh(0) -> 0 return _ex0(); if (!x.info(info_flags::crational)) // tanh(float) -> float return tanh_evalf(x); } if ((x/Pi).info(info_flags::numeric) && ex_to(x/Pi).real().is_zero()) // tanh(I*x) -> I*tan(x); return I*tan(x/I); if (is_ex_exactly_of_type(x, function)) { ex t = x.op(0); // tanh(atanh(x)) -> x if (is_ex_the_function(x, atanh)) return t; // tanh(asinh(x)) -> x*(1+x^2)^(-1/2) if (is_ex_the_function(x, asinh)) return t*power(_ex1()+power(t,_ex2()),_ex_1_2()); // tanh(acosh(x)) -> (x-1)^(1/2)*(x+1)^(1/2)/x if (is_ex_the_function(x, acosh)) return power(t-_ex1(),_ex1_2())*power(t+_ex1(),_ex1_2())*power(t,_ex_1()); } return tanh(x).hold(); } static ex tanh_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx tanh(x) -> 1-tanh(x)^2 return _ex1()-power(tanh(x),_ex2()); } static ex tanh_series(const ex &x, const relational &rel, int order, unsigned options) { GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol)); // method: // Taylor series where there is no pole falls back to tanh_deriv. // On a pole simply expand sinh(x)/cosh(x). const ex x_pt = x.subs(rel); if (!(2*I*x_pt/Pi).info(info_flags::odd)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole return (sinh(x)/cosh(x)).series(rel, order+2, options); } REGISTER_FUNCTION(tanh, eval_func(tanh_eval). evalf_func(tanh_evalf). derivative_func(tanh_deriv). series_func(tanh_series). latex_name("\\tanh")); ////////// // inverse hyperbolic sine (trigonometric function) ////////// static ex asinh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(asinh(x)) return asinh(ex_to(x)); // -> numeric asinh(numeric) } static ex asinh_eval(const ex & x) { if (x.info(info_flags::numeric)) { // asinh(0) -> 0 if (x.is_zero()) return _ex0(); // asinh(float) -> float if (!x.info(info_flags::crational)) return asinh_evalf(x); } return asinh(x).hold(); } static ex asinh_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx asinh(x) -> 1/sqrt(1+x^2) return power(_ex1()+power(x,_ex2()),_ex_1_2()); } REGISTER_FUNCTION(asinh, eval_func(asinh_eval). evalf_func(asinh_evalf). derivative_func(asinh_deriv)); ////////// // inverse hyperbolic cosine (trigonometric function) ////////// static ex acosh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(acosh(x)) return acosh(ex_to(x)); // -> numeric acosh(numeric) } static ex acosh_eval(const ex & x) { if (x.info(info_flags::numeric)) { // acosh(0) -> Pi*I/2 if (x.is_zero()) return Pi*I*numeric(1,2); // acosh(1) -> 0 if (x.is_equal(_ex1())) return _ex0(); // acosh(-1) -> Pi*I if (x.is_equal(_ex_1())) return Pi*I; // acosh(float) -> float if (!x.info(info_flags::crational)) return acosh_evalf(x); } return acosh(x).hold(); } static ex acosh_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx acosh(x) -> 1/(sqrt(x-1)*sqrt(x+1)) return power(x+_ex_1(),_ex_1_2())*power(x+_ex1(),_ex_1_2()); } REGISTER_FUNCTION(acosh, eval_func(acosh_eval). evalf_func(acosh_evalf). derivative_func(acosh_deriv)); ////////// // inverse hyperbolic tangent (trigonometric function) ////////// static ex atanh_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(atanh(x)) return atanh(ex_to(x)); // -> numeric atanh(numeric) } static ex atanh_eval(const ex & x) { if (x.info(info_flags::numeric)) { // atanh(0) -> 0 if (x.is_zero()) return _ex0(); // atanh({+|-}1) -> throw if (x.is_equal(_ex1()) || x.is_equal(_ex_1())) throw (pole_error("atanh_eval(): logarithmic pole",0)); // atanh(float) -> float if (!x.info(info_flags::crational)) return atanh_evalf(x); } return atanh(x).hold(); } static ex atanh_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx atanh(x) -> 1/(1-x^2) return power(_ex1()-power(x,_ex2()),_ex_1()); } static ex atanh_series(const ex &arg, const relational &rel, int order, unsigned options) { GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol)); // method: // Taylor series where there is no pole or cut falls back to atanh_deriv. // There are two branch cuts, one runnig from 1 up the real axis and one // one running from -1 down the real axis. The points 1 and -1 are poles // On the branch cuts and the poles series expand // (log(1+x)-log(1-x))/2 // instead. const ex arg_pt = arg.subs(rel); if (!(arg_pt).info(info_flags::real)) throw do_taylor(); // Im(x) != 0 if ((arg_pt).info(info_flags::real) && abs(arg_pt)<_ex1()) throw do_taylor(); // Im(x) == 0, but abs(x)<1 // care for the poles, using the defining formula for atanh()... if (arg_pt.is_equal(_ex1()) || arg_pt.is_equal(_ex_1())) return ((log(_ex1()+arg)-log(_ex1()-arg))*_ex1_2()).series(rel, order, options); // ...and the branch cuts (the discontinuity at the cut being just I*Pi) if (!(options & series_options::suppress_branchcut)) { // method: // This is the branch cut: assemble the primitive series manually and // then add the corresponding complex step function. const symbol *s = static_cast(rel.lhs().bp); const ex point = rel.rhs(); const symbol foo; ex replarg = series(atanh(arg), *s==foo, order).subs(foo==point); ex Order0correction = replarg.op(0)+csgn(I*arg)*Pi*I*_ex1_2(); if (arg_pt<_ex0()) Order0correction += log((arg_pt+_ex_1())/(arg_pt+_ex1()))*_ex1_2(); else Order0correction += log((arg_pt+_ex1())/(arg_pt+_ex_1()))*_ex_1_2(); epvector seq; seq.push_back(expair(Order0correction, _ex0())); seq.push_back(expair(Order(_ex1()), order)); return series(replarg - pseries(rel, seq), rel, order); } throw do_taylor(); } REGISTER_FUNCTION(atanh, eval_func(atanh_eval). evalf_func(atanh_evalf). derivative_func(atanh_deriv). series_func(atanh_series)); } // namespace GiNaC