/** @file inifcns_gamma.cpp * * Implementation of Gamma-function, Beta-function, Polygamma-functions, and * some related stuff. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "inifcns.h" #include "constant.h" #include "pseries.h" #include "numeric.h" #include "power.h" #include "relational.h" #include "symbol.h" #include "symmetry.h" #include "utils.h" namespace GiNaC { ////////// // Logarithm of Gamma function ////////// static ex lgamma_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(lgamma(x)) return lgamma(ex_to(x)); } /** Evaluation of lgamma(x), the natural logarithm of the Gamma function. * Knows about integer arguments and that's it. Somebody ought to provide * some good numerical evaluation some day... * * @exception GiNaC::pole_error("lgamma_eval(): logarithmic pole",0) */ static ex lgamma_eval(const ex & x) { if (x.info(info_flags::numeric)) { // trap integer arguments: if (x.info(info_flags::integer)) { // lgamma(n) -> log((n-1)!) for postitive n if (x.info(info_flags::posint)) return log(factorial(x + _ex_1())); else throw (pole_error("lgamma_eval(): logarithmic pole",0)); } // lgamma_evalf should be called here once it becomes available } return lgamma(x).hold(); } static ex lgamma_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx lgamma(x) -> psi(x) return psi(x); } static ex lgamma_series(const ex & arg, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole falls back to psi function // evaluation. // On a pole at -m we could use the recurrence relation // lgamma(x) == lgamma(x+1)-log(x) // from which follows // series(lgamma(x),x==-m,order) == // series(lgamma(x+m+1)-log(x)...-log(x+m)),x==-m,order); const ex arg_pt = arg.subs(rel); if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole of tgamma(-m): numeric m = -ex_to(arg_pt); ex recur; for (numeric p; p<=m; ++p) recur += log(arg+p); return (lgamma(arg+m+_ex1())-recur).series(rel, order, options); } REGISTER_FUNCTION(lgamma, eval_func(lgamma_eval). evalf_func(lgamma_evalf). derivative_func(lgamma_deriv). series_func(lgamma_series). latex_name("\\log \\Gamma")); ////////// // true Gamma function ////////// static ex tgamma_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(tgamma(x)) return tgamma(ex_to(x)); } /** Evaluation of tgamma(x), the true Gamma function. Knows about integer * arguments, half-integer arguments and that's it. Somebody ought to provide * some good numerical evaluation some day... * * @exception pole_error("tgamma_eval(): simple pole",0) */ static ex tgamma_eval(const ex & x) { if (x.info(info_flags::numeric)) { // trap integer arguments: if (x.info(info_flags::integer)) { // tgamma(n) -> (n-1)! for postitive n if (x.info(info_flags::posint)) { return factorial(ex_to(x).sub(_num1())); } else { throw (pole_error("tgamma_eval(): simple pole",1)); } } // trap half integer arguments: if ((x*2).info(info_flags::integer)) { // trap positive x==(n+1/2) // tgamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n) if ((x*_ex2()).info(info_flags::posint)) { numeric n = ex_to(x).sub(_num1_2()); numeric coefficient = doublefactorial(n.mul(_num2()).sub(_num1())); coefficient = coefficient.div(pow(_num2(),n)); return coefficient * pow(Pi,_ex1_2()); } else { // trap negative x==(-n+1/2) // tgamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1)) numeric n = abs(ex_to(x).sub(_num1_2())); numeric coefficient = pow(_num_2(), n); coefficient = coefficient.div(doublefactorial(n.mul(_num2()).sub(_num1())));; return coefficient*power(Pi,_ex1_2()); } } // tgamma_evalf should be called here once it becomes available } return tgamma(x).hold(); } static ex tgamma_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx tgamma(x) -> psi(x)*tgamma(x) return psi(x)*tgamma(x); } static ex tgamma_series(const ex & arg, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole falls back to psi function // evaluation. // On a pole at -m use the recurrence relation // tgamma(x) == tgamma(x+1) / x // from which follows // series(tgamma(x),x==-m,order) == // series(tgamma(x+m+1)/(x*(x+1)*...*(x+m)),x==-m,order+1); const ex arg_pt = arg.subs(rel); if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole at -m: numeric m = -ex_to(arg_pt); ex ser_denom = _ex1(); for (numeric p; p<=m; ++p) ser_denom *= arg+p; return (tgamma(arg+m+_ex1())/ser_denom).series(rel, order+1, options); } REGISTER_FUNCTION(tgamma, eval_func(tgamma_eval). evalf_func(tgamma_evalf). derivative_func(tgamma_deriv). series_func(tgamma_series). latex_name("\\Gamma")); ////////// // beta-function ////////// static ex beta_evalf(const ex & x, const ex & y) { BEGIN_TYPECHECK TYPECHECK(x,numeric) TYPECHECK(y,numeric) END_TYPECHECK(beta(x,y)) return tgamma(ex_to(x))*tgamma(ex_to(y))/tgamma(ex_to(x+y)); } static ex beta_eval(const ex & x, const ex & y) { if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) { // treat all problematic x and y that may not be passed into tgamma, // because they would throw there although beta(x,y) is well-defined // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y) numeric nx(ex_to(x)); numeric ny(ex_to(y)); if (nx.is_real() && nx.is_integer() && ny.is_real() && ny.is_integer()) { if (nx.is_negative()) { if (nx<=-ny) return pow(_num_1(), ny)*beta(1-x-y, y); else throw (pole_error("beta_eval(): simple pole",1)); } if (ny.is_negative()) { if (ny<=-nx) return pow(_num_1(), nx)*beta(1-y-x, x); else throw (pole_error("beta_eval(): simple pole",1)); } return tgamma(x)*tgamma(y)/tgamma(x+y); } // no problem in numerator, but denominator has pole: if ((nx+ny).is_real() && (nx+ny).is_integer() && !(nx+ny).is_positive()) return _ex0(); // everything is ok: return tgamma(x)*tgamma(y)/tgamma(x+y); } return beta(x,y).hold(); } static ex beta_deriv(const ex & x, const ex & y, unsigned deriv_param) { GINAC_ASSERT(deriv_param<2); ex retval; // d/dx beta(x,y) -> (psi(x)-psi(x+y)) * beta(x,y) if (deriv_param==0) retval = (psi(x)-psi(x+y))*beta(x,y); // d/dy beta(x,y) -> (psi(y)-psi(x+y)) * beta(x,y) if (deriv_param==1) retval = (psi(y)-psi(x+y))*beta(x,y); return retval; } static ex beta_series(const ex & arg1, const ex & arg2, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole of one of the tgamma functions // falls back to beta function evaluation. Otherwise, fall back to // tgamma series directly. const ex arg1_pt = arg1.subs(rel); const ex arg2_pt = arg2.subs(rel); GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol)); const symbol *s = static_cast(rel.lhs().bp); ex arg1_ser, arg2_ser, arg1arg2_ser; if ((!arg1_pt.info(info_flags::integer) || arg1_pt.info(info_flags::positive)) && (!arg2_pt.info(info_flags::integer) || arg2_pt.info(info_flags::positive))) throw do_taylor(); // caught by function::series() // trap the case where arg1 is on a pole: if (arg1.info(info_flags::integer) && !arg1.info(info_flags::positive)) arg1_ser = tgamma(arg1+*s).series(rel, order, options); else arg1_ser = tgamma(arg1).series(rel,order); // trap the case where arg2 is on a pole: if (arg2.info(info_flags::integer) && !arg2.info(info_flags::positive)) arg2_ser = tgamma(arg2+*s).series(rel, order, options); else arg2_ser = tgamma(arg2).series(rel,order); // trap the case where arg1+arg2 is on a pole: if ((arg1+arg2).info(info_flags::integer) && !(arg1+arg2).info(info_flags::positive)) arg1arg2_ser = tgamma(arg2+arg1+*s).series(rel, order, options); else arg1arg2_ser = tgamma(arg2+arg1).series(rel,order); // compose the result (expanding all the terms): return (arg1_ser*arg2_ser/arg1arg2_ser).series(rel, order, options).expand(); } REGISTER_FUNCTION(beta, eval_func(beta_eval). evalf_func(beta_evalf). derivative_func(beta_deriv). series_func(beta_series). latex_name("\\mbox{B}"). set_symmetry(sy_symm(0, 1))); ////////// // Psi-function (aka digamma-function) ////////// static ex psi1_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(psi(x)) return psi(ex_to(x)); } /** Evaluation of digamma-function psi(x). * Somebody ought to provide some good numerical evaluation some day... */ static ex psi1_eval(const ex & x) { if (x.info(info_flags::numeric)) { numeric nx = ex_to(x); if (nx.is_integer()) { // integer case if (nx.is_positive()) { // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - Euler numeric rat(0); for (numeric i(nx+_num_1()); i.is_positive(); --i) rat += i.inverse(); return rat-Euler; } else { // for non-positive integers there is a pole: throw (pole_error("psi_eval(): simple pole",1)); } } if ((_num2()*nx).is_integer()) { // half integer case if (nx.is_positive()) { // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - Euler - 2log(2) numeric rat(0); for (numeric i((nx+_num_1())*_num2()); i.is_positive(); i-=_num2()) rat += _num2()*i.inverse(); return rat-Euler-_ex2()*log(_ex2()); } else { // use the recurrence relation // psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2) // to relate psi(-m-1/2) to psi(1/2): // psi(-m-1/2) == psi(1/2) + r // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1)) numeric recur(0); for (numeric p(nx); p<0; ++p) recur -= pow(p, _num_1()); return recur+psi(_ex1_2()); } } // psi1_evalf should be called here once it becomes available } return psi(x).hold(); } static ex psi1_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx psi(x) -> psi(1,x) return psi(_ex1(), x); } static ex psi1_series(const ex & arg, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole falls back to polygamma function // evaluation. // On a pole at -m use the recurrence relation // psi(x) == psi(x+1) - 1/z // from which follows // series(psi(x),x==-m,order) == // series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x==-m,order); const ex arg_pt = arg.subs(rel); if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole at -m: numeric m = -ex_to(arg_pt); ex recur; for (numeric p; p<=m; ++p) recur += power(arg+p,_ex_1()); return (psi(arg+m+_ex1())-recur).series(rel, order, options); } const unsigned function_index_psi1 = function::register_new(function_options("psi"). eval_func(psi1_eval). evalf_func(psi1_evalf). derivative_func(psi1_deriv). series_func(psi1_series). latex_name("\\psi"). overloaded(2)); ////////// // Psi-functions (aka polygamma-functions) psi(0,x)==psi(x) ////////// static ex psi2_evalf(const ex & n, const ex & x) { BEGIN_TYPECHECK TYPECHECK(n,numeric) TYPECHECK(x,numeric) END_TYPECHECK(psi(n,x)) return psi(ex_to(n), ex_to(x)); } /** Evaluation of polygamma-function psi(n,x). * Somebody ought to provide some good numerical evaluation some day... */ static ex psi2_eval(const ex & n, const ex & x) { // psi(0,x) -> psi(x) if (n.is_zero()) return psi(x); // psi(-1,x) -> log(tgamma(x)) if (n.is_equal(_ex_1())) return log(tgamma(x)); if (n.info(info_flags::numeric) && n.info(info_flags::posint) && x.info(info_flags::numeric)) { numeric nn = ex_to(n); numeric nx = ex_to(x); if (nx.is_integer()) { // integer case if (nx.is_equal(_num1())) // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1) return pow(_num_1(),nn+_num1())*factorial(nn)*zeta(ex(nn+_num1())); if (nx.is_positive()) { // use the recurrence relation // psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1) // to relate psi(n,m) to psi(n,1): // psi(n,m) == psi(n,1) + r // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1)) numeric recur(0); for (numeric p(1); p psi(n+1,x) return psi(n+_ex1(), x); } static ex psi2_series(const ex & n, const ex & arg, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole falls back to polygamma function // evaluation. // On a pole at -m use the recurrence relation // psi(n,x) == psi(n,x+1) - (-)^n * n! / x^(n+1) // from which follows // series(psi(x),x==-m,order) == // series(psi(x+m+1) - (-1)^n * n! * ((x)^(-n-1) + (x+1)^(-n-1) + ... // ... + (x+m)^(-n-1))),x==-m,order); const ex arg_pt = arg.subs(rel); if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a pole of order n+1 at -m: numeric m = -ex_to(arg_pt); ex recur; for (numeric p; p<=m; ++p) recur += power(arg+p,-n+_ex_1()); recur *= factorial(n)*power(_ex_1(),n); return (psi(n, arg+m+_ex1())-recur).series(rel, order, options); } const unsigned function_index_psi2 = function::register_new(function_options("psi"). eval_func(psi2_eval). evalf_func(psi2_evalf). derivative_func(psi2_deriv). series_func(psi2_series). latex_name("\\psi"). overloaded(2)); } // namespace GiNaC