/** @file inifcns_gamma.cpp * * Implementation of Gamma-function, Beta-function, Polygamma-functions, and * some related stuff. */ /* * GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "inifcns.h" #include "constant.h" #include "pseries.h" #include "numeric.h" #include "power.h" #include "relational.h" #include "operators.h" #include "symbol.h" #include "symmetry.h" #include "utils.h" namespace GiNaC { ////////// // Logarithm of Gamma function ////////// static ex lgamma_evalf(const ex & x) { if (is_exactly_a(x)) { try { return lgamma(ex_to(x)); } catch (const dunno &e) { } } return lgamma(x).hold(); } /** Evaluation of lgamma(x), the natural logarithm of the Gamma function. * Knows about integer arguments and that's it. Somebody ought to provide * some good numerical evaluation some day... * * @exception GiNaC::pole_error("lgamma_eval(): logarithmic pole",0) */ static ex lgamma_eval(const ex & x) { if (x.info(info_flags::numeric)) { // trap integer arguments: if (x.info(info_flags::integer)) { // lgamma(n) -> log((n-1)!) for postitive n if (x.info(info_flags::posint)) return log(factorial(x + _ex_1)); else throw (pole_error("lgamma_eval(): logarithmic pole",0)); } // lgamma_evalf should be called here once it becomes available } return lgamma(x).hold(); } static ex lgamma_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx lgamma(x) -> psi(x) return psi(x); } static ex lgamma_series(const ex & arg, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole falls back to psi function // evaluation. // On a pole at -m we could use the recurrence relation // lgamma(x) == lgamma(x+1)-log(x) // from which follows // series(lgamma(x),x==-m,order) == // series(lgamma(x+m+1)-log(x)...-log(x+m)),x==-m,order); const ex arg_pt = arg.subs(rel, subs_options::no_pattern); if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole of tgamma(-m): numeric m = -ex_to(arg_pt); ex recur; for (numeric p = 0; p<=m; ++p) recur += log(arg+p); return (lgamma(arg+m+_ex1)-recur).series(rel, order, options); } REGISTER_FUNCTION(lgamma, eval_func(lgamma_eval). evalf_func(lgamma_evalf). derivative_func(lgamma_deriv). series_func(lgamma_series). latex_name("\\log \\Gamma")); ////////// // true Gamma function ////////// static ex tgamma_evalf(const ex & x) { if (is_exactly_a(x)) { try { return tgamma(ex_to(x)); } catch (const dunno &e) { } } return tgamma(x).hold(); } /** Evaluation of tgamma(x), the true Gamma function. Knows about integer * arguments, half-integer arguments and that's it. Somebody ought to provide * some good numerical evaluation some day... * * @exception pole_error("tgamma_eval(): simple pole",0) */ static ex tgamma_eval(const ex & x) { if (x.info(info_flags::numeric)) { // trap integer arguments: const numeric two_x = (*_num2_p)*ex_to(x); if (two_x.is_even()) { // tgamma(n) -> (n-1)! for postitive n if (two_x.is_positive()) { return factorial(ex_to(x).sub(*_num1_p)); } else { throw (pole_error("tgamma_eval(): simple pole",1)); } } // trap half integer arguments: if (two_x.is_integer()) { // trap positive x==(n+1/2) // tgamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n) if (two_x.is_positive()) { const numeric n = ex_to(x).sub(*_num1_2_p); return (doublefactorial(n.mul(*_num2_p).sub(*_num1_p)).div(pow(*_num2_p,n))) * sqrt(Pi); } else { // trap negative x==(-n+1/2) // tgamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1)) const numeric n = abs(ex_to(x).sub(*_num1_2_p)); return (pow(*_num_2_p, n).div(doublefactorial(n.mul(*_num2_p).sub(*_num1_p))))*sqrt(Pi); } } // tgamma_evalf should be called here once it becomes available } return tgamma(x).hold(); } static ex tgamma_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx tgamma(x) -> psi(x)*tgamma(x) return psi(x)*tgamma(x); } static ex tgamma_series(const ex & arg, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole falls back to psi function // evaluation. // On a pole at -m use the recurrence relation // tgamma(x) == tgamma(x+1) / x // from which follows // series(tgamma(x),x==-m,order) == // series(tgamma(x+m+1)/(x*(x+1)*...*(x+m)),x==-m,order); const ex arg_pt = arg.subs(rel, subs_options::no_pattern); if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole at -m: const numeric m = -ex_to(arg_pt); ex ser_denom = _ex1; for (numeric p; p<=m; ++p) ser_denom *= arg+p; return (tgamma(arg+m+_ex1)/ser_denom).series(rel, order, options); } REGISTER_FUNCTION(tgamma, eval_func(tgamma_eval). evalf_func(tgamma_evalf). derivative_func(tgamma_deriv). series_func(tgamma_series). latex_name("\\Gamma")); ////////// // beta-function ////////// static ex beta_evalf(const ex & x, const ex & y) { if (is_exactly_a(x) && is_exactly_a(y)) { try { return tgamma(ex_to(x))*tgamma(ex_to(y))/tgamma(ex_to(x+y)); } catch (const dunno &e) { } } return beta(x,y).hold(); } static ex beta_eval(const ex & x, const ex & y) { if (x.is_equal(_ex1)) return 1/y; if (y.is_equal(_ex1)) return 1/x; if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) { // treat all problematic x and y that may not be passed into tgamma, // because they would throw there although beta(x,y) is well-defined // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y) const numeric &nx = ex_to(x); const numeric &ny = ex_to(y); if (nx.is_real() && nx.is_integer() && ny.is_real() && ny.is_integer()) { if (nx.is_negative()) { if (nx<=-ny) return pow(*_num_1_p, ny)*beta(1-x-y, y); else throw (pole_error("beta_eval(): simple pole",1)); } if (ny.is_negative()) { if (ny<=-nx) return pow(*_num_1_p, nx)*beta(1-y-x, x); else throw (pole_error("beta_eval(): simple pole",1)); } return tgamma(x)*tgamma(y)/tgamma(x+y); } // no problem in numerator, but denominator has pole: if ((nx+ny).is_real() && (nx+ny).is_integer() && !(nx+ny).is_positive()) return _ex0; // beta_evalf should be called here once it becomes available } return beta(x,y).hold(); } static ex beta_deriv(const ex & x, const ex & y, unsigned deriv_param) { GINAC_ASSERT(deriv_param<2); ex retval; // d/dx beta(x,y) -> (psi(x)-psi(x+y)) * beta(x,y) if (deriv_param==0) retval = (psi(x)-psi(x+y))*beta(x,y); // d/dy beta(x,y) -> (psi(y)-psi(x+y)) * beta(x,y) if (deriv_param==1) retval = (psi(y)-psi(x+y))*beta(x,y); return retval; } static ex beta_series(const ex & arg1, const ex & arg2, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole of one of the tgamma functions // falls back to beta function evaluation. Otherwise, fall back to // tgamma series directly. const ex arg1_pt = arg1.subs(rel, subs_options::no_pattern); const ex arg2_pt = arg2.subs(rel, subs_options::no_pattern); GINAC_ASSERT(is_a(rel.lhs())); const symbol &s = ex_to(rel.lhs()); ex arg1_ser, arg2_ser, arg1arg2_ser; if ((!arg1_pt.info(info_flags::integer) || arg1_pt.info(info_flags::positive)) && (!arg2_pt.info(info_flags::integer) || arg2_pt.info(info_flags::positive))) throw do_taylor(); // caught by function::series() // trap the case where arg1 is on a pole: if (arg1.info(info_flags::integer) && !arg1.info(info_flags::positive)) arg1_ser = tgamma(arg1+s); else arg1_ser = tgamma(arg1); // trap the case where arg2 is on a pole: if (arg2.info(info_flags::integer) && !arg2.info(info_flags::positive)) arg2_ser = tgamma(arg2+s); else arg2_ser = tgamma(arg2); // trap the case where arg1+arg2 is on a pole: if ((arg1+arg2).info(info_flags::integer) && !(arg1+arg2).info(info_flags::positive)) arg1arg2_ser = tgamma(arg2+arg1+s); else arg1arg2_ser = tgamma(arg2+arg1); // compose the result (expanding all the terms): return (arg1_ser*arg2_ser/arg1arg2_ser).series(rel, order, options).expand(); } REGISTER_FUNCTION(beta, eval_func(beta_eval). evalf_func(beta_evalf). derivative_func(beta_deriv). series_func(beta_series). latex_name("\\mbox{B}"). set_symmetry(sy_symm(0, 1))); ////////// // Psi-function (aka digamma-function) ////////// static ex psi1_evalf(const ex & x) { if (is_exactly_a(x)) { try { return psi(ex_to(x)); } catch (const dunno &e) { } } return psi(x).hold(); } /** Evaluation of digamma-function psi(x). * Somebody ought to provide some good numerical evaluation some day... */ static ex psi1_eval(const ex & x) { if (x.info(info_flags::numeric)) { const numeric &nx = ex_to(x); if (nx.is_integer()) { // integer case if (nx.is_positive()) { // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - Euler numeric rat = 0; for (numeric i(nx+(*_num_1_p)); i>0; --i) rat += i.inverse(); return rat-Euler; } else { // for non-positive integers there is a pole: throw (pole_error("psi_eval(): simple pole",1)); } } if (((*_num2_p)*nx).is_integer()) { // half integer case if (nx.is_positive()) { // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - Euler - 2log(2) numeric rat = 0; for (numeric i = (nx+(*_num_1_p))*(*_num2_p); i>0; i-=(*_num2_p)) rat += (*_num2_p)*i.inverse(); return rat-Euler-_ex2*log(_ex2); } else { // use the recurrence relation // psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2) // to relate psi(-m-1/2) to psi(1/2): // psi(-m-1/2) == psi(1/2) + r // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1)) numeric recur = 0; for (numeric p = nx; p<0; ++p) recur -= pow(p, *_num_1_p); return recur+psi(_ex1_2); } } // psi1_evalf should be called here once it becomes available } return psi(x).hold(); } static ex psi1_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx psi(x) -> psi(1,x) return psi(_ex1, x); } static ex psi1_series(const ex & arg, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole falls back to polygamma function // evaluation. // On a pole at -m use the recurrence relation // psi(x) == psi(x+1) - 1/z // from which follows // series(psi(x),x==-m,order) == // series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x==-m,order); const ex arg_pt = arg.subs(rel, subs_options::no_pattern); if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole at -m: const numeric m = -ex_to(arg_pt); ex recur; for (numeric p; p<=m; ++p) recur += power(arg+p,_ex_1); return (psi(arg+m+_ex1)-recur).series(rel, order, options); } unsigned psi1_SERIAL::serial = function::register_new(function_options("psi", 1). eval_func(psi1_eval). evalf_func(psi1_evalf). derivative_func(psi1_deriv). series_func(psi1_series). latex_name("\\psi"). overloaded(2)); ////////// // Psi-functions (aka polygamma-functions) psi(0,x)==psi(x) ////////// static ex psi2_evalf(const ex & n, const ex & x) { if (is_exactly_a(n) && is_exactly_a(x)) { try { return psi(ex_to(n),ex_to(x)); } catch (const dunno &e) { } } return psi(n,x).hold(); } /** Evaluation of polygamma-function psi(n,x). * Somebody ought to provide some good numerical evaluation some day... */ static ex psi2_eval(const ex & n, const ex & x) { // psi(0,x) -> psi(x) if (n.is_zero()) return psi(x); // psi(-1,x) -> log(tgamma(x)) if (n.is_equal(_ex_1)) return log(tgamma(x)); if (n.info(info_flags::numeric) && n.info(info_flags::posint) && x.info(info_flags::numeric)) { const numeric &nn = ex_to(n); const numeric &nx = ex_to(x); if (nx.is_integer()) { // integer case if (nx.is_equal(*_num1_p)) // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1) return pow(*_num_1_p,nn+(*_num1_p))*factorial(nn)*zeta(ex(nn+(*_num1_p))); if (nx.is_positive()) { // use the recurrence relation // psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1) // to relate psi(n,m) to psi(n,1): // psi(n,m) == psi(n,1) + r // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1)) numeric recur = 0; for (numeric p = 1; p psi(n+1,x) return psi(n+_ex1, x); } static ex psi2_series(const ex & n, const ex & arg, const relational & rel, int order, unsigned options) { // method: // Taylor series where there is no pole falls back to polygamma function // evaluation. // On a pole at -m use the recurrence relation // psi(n,x) == psi(n,x+1) - (-)^n * n! / x^(n+1) // from which follows // series(psi(x),x==-m,order) == // series(psi(x+m+1) - (-1)^n * n! * ((x)^(-n-1) + (x+1)^(-n-1) + ... // ... + (x+m)^(-n-1))),x==-m,order); const ex arg_pt = arg.subs(rel, subs_options::no_pattern); if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a pole of order n+1 at -m: const numeric m = -ex_to(arg_pt); ex recur; for (numeric p; p<=m; ++p) recur += power(arg+p,-n+_ex_1); recur *= factorial(n)*power(_ex_1,n); return (psi(n, arg+m+_ex1)-recur).series(rel, order, options); } unsigned psi2_SERIAL::serial = function::register_new(function_options("psi", 2). eval_func(psi2_eval). evalf_func(psi2_evalf). derivative_func(psi2_deriv). series_func(psi2_series). latex_name("\\psi"). overloaded(2)); } // namespace GiNaC