/** @file inifcns.h * * Interface to GiNaC's initially known functions. */ /* * GiNaC Copyright (C) 1999-2018 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef GINAC_INIFCNS_H #define GINAC_INIFCNS_H #include "numeric.h" #include "function.h" #include "ex.h" namespace GiNaC { /** Complex conjugate. */ DECLARE_FUNCTION_1P(conjugate_function) /** Real part. */ DECLARE_FUNCTION_1P(real_part_function) /** Imaginary part. */ DECLARE_FUNCTION_1P(imag_part_function) /** Absolute value. */ DECLARE_FUNCTION_1P(abs) /** Step function. */ DECLARE_FUNCTION_1P(step) /** Complex sign. */ DECLARE_FUNCTION_1P(csgn) /** Eta function: log(a*b) == log(a) + log(b) + eta(a, b). */ DECLARE_FUNCTION_2P(eta) /** Sine. */ DECLARE_FUNCTION_1P(sin) /** Cosine. */ DECLARE_FUNCTION_1P(cos) /** Tangent. */ DECLARE_FUNCTION_1P(tan) /** Exponential function. */ DECLARE_FUNCTION_1P(exp) /** Natural logarithm. */ DECLARE_FUNCTION_1P(log) /** Inverse sine (arc sine). */ DECLARE_FUNCTION_1P(asin) /** Inverse cosine (arc cosine). */ DECLARE_FUNCTION_1P(acos) /** Inverse tangent (arc tangent). */ DECLARE_FUNCTION_1P(atan) /** Inverse tangent with two arguments. */ DECLARE_FUNCTION_2P(atan2) /** Hyperbolic Sine. */ DECLARE_FUNCTION_1P(sinh) /** Hyperbolic Cosine. */ DECLARE_FUNCTION_1P(cosh) /** Hyperbolic Tangent. */ DECLARE_FUNCTION_1P(tanh) /** Inverse hyperbolic Sine (area hyperbolic sine). */ DECLARE_FUNCTION_1P(asinh) /** Inverse hyperbolic Cosine (area hyperbolic cosine). */ DECLARE_FUNCTION_1P(acosh) /** Inverse hyperbolic Tangent (area hyperbolic tangent). */ DECLARE_FUNCTION_1P(atanh) /** Dilogarithm. */ DECLARE_FUNCTION_1P(Li2) /** Trilogarithm. */ DECLARE_FUNCTION_1P(Li3) /** Derivatives of Riemann's Zeta-function. */ DECLARE_FUNCTION_2P(zetaderiv) // overloading at work: we cannot use the macros here /** Multiple zeta value including Riemann's zeta-function. */ class zeta1_SERIAL { public: static unsigned serial; }; template inline function zeta(const T1& p1) { return function(zeta1_SERIAL::serial, ex(p1)); } /** Alternating Euler sum or colored MZV. */ class zeta2_SERIAL { public: static unsigned serial; }; template inline function zeta(const T1& p1, const T2& p2) { return function(zeta2_SERIAL::serial, ex(p1), ex(p2)); } class zeta_SERIAL; template<> inline bool is_the_function(const ex& x) { return is_the_function(x) || is_the_function(x); } // overloading at work: we cannot use the macros here /** Generalized multiple polylogarithm. */ class G2_SERIAL { public: static unsigned serial; }; template inline function G(const T1& x, const T2& y) { return function(G2_SERIAL::serial, ex(x), ex(y)); } /** Generalized multiple polylogarithm with explicit imaginary parts. */ class G3_SERIAL { public: static unsigned serial; }; template inline function G(const T1& x, const T2& s, const T3& y) { return function(G3_SERIAL::serial, ex(x), ex(s), ex(y)); } class G_SERIAL; template<> inline bool is_the_function(const ex& x) { return is_the_function(x) || is_the_function(x); } /** Polylogarithm and multiple polylogarithm. */ DECLARE_FUNCTION_2P(Li) /** Nielsen's generalized polylogarithm. */ DECLARE_FUNCTION_3P(S) /** Harmonic polylogarithm. */ DECLARE_FUNCTION_2P(H) /** Gamma-function. */ DECLARE_FUNCTION_1P(lgamma) DECLARE_FUNCTION_1P(tgamma) /** Beta-function. */ DECLARE_FUNCTION_2P(beta) // overloading at work: we cannot use the macros here /** Psi-function (aka digamma-function). */ class psi1_SERIAL { public: static unsigned serial; }; template inline function psi(const T1 & p1) { return function(psi1_SERIAL::serial, ex(p1)); } /** Derivatives of Psi-function (aka polygamma-functions). */ class psi2_SERIAL { public: static unsigned serial; }; template inline function psi(const T1 & p1, const T2 & p2) { return function(psi2_SERIAL::serial, ex(p1), ex(p2)); } class psi_SERIAL; template<> inline bool is_the_function(const ex & x) { return is_the_function(x) || is_the_function(x); } /** Factorial function. */ DECLARE_FUNCTION_1P(factorial) /** Binomial function. */ DECLARE_FUNCTION_2P(binomial) /** Order term function (for truncated power series). */ DECLARE_FUNCTION_1P(Order) ex lsolve(const ex &eqns, const ex &symbols, unsigned options = solve_algo::automatic); /** Find a real root of real-valued function f(x) numerically within a given * interval. The function must change sign across interval. Uses Newton- * Raphson method combined with bisection in order to guarantee convergence. * * @param f Function f(x) * @param x Symbol f(x) * @param x1 lower interval limit * @param x2 upper interval limit * @exception runtime_error (if interval is invalid). */ const numeric fsolve(const ex& f, const symbol& x, const numeric& x1, const numeric& x2); /** Check whether a function is the Order (O(n)) function. */ inline bool is_order_function(const ex & e) { return is_ex_the_function(e, Order); } /** Converts a given list containing parameters for H in Remiddi/Vermaseren notation into * the corresponding GiNaC functions. */ ex convert_H_to_Li(const ex& parameterlst, const ex& arg); } // namespace GiNaC #endif // ndef GINAC_INIFCNS_H