/** @file inifcns.cpp * * Implementation of GiNaC's initially known functions. */ /* * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "inifcns.h" #include "ex.h" #include "constant.h" #include "lst.h" #include "matrix.h" #include "mul.h" #include "ncmul.h" #include "numeric.h" #include "power.h" #include "relational.h" #include "pseries.h" #include "symbol.h" #include "utils.h" #ifndef NO_NAMESPACE_GINAC namespace GiNaC { #endif // ndef NO_NAMESPACE_GINAC ////////// // absolute value ////////// static ex abs_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(abs(x)) return abs(ex_to_numeric(x)); } static ex abs_eval(const ex & x) { if (is_ex_exactly_of_type(x, numeric)) return abs(ex_to_numeric(x)); else return abs(x).hold(); } REGISTER_FUNCTION(abs, eval_func(abs_eval). evalf_func(abs_evalf)); ////////// // Complex sign ////////// static ex csgn_evalf(const ex & x) { BEGIN_TYPECHECK TYPECHECK(x,numeric) END_TYPECHECK(csgn(x)) return csgn(ex_to_numeric(x)); } static ex csgn_eval(const ex & x) { if (is_ex_exactly_of_type(x, numeric)) return csgn(ex_to_numeric(x)); if (is_ex_exactly_of_type(x, mul)) { numeric oc = ex_to_numeric(x.op(x.nops()-1)); if (oc.is_real()) { if (oc > 0) // csgn(42*x) -> csgn(x) return csgn(x/oc).hold(); else // csgn(-42*x) -> -csgn(x) return -csgn(x/oc).hold(); } if (oc.real().is_zero()) { if (oc.imag() > 0) // csgn(42*I*x) -> csgn(I*x) return csgn(I*x/oc).hold(); else // csgn(-42*I*x) -> -csgn(I*x) return -csgn(I*x/oc).hold(); } } return csgn(x).hold(); } static ex csgn_series(const ex & x, const relational & rel, int order) { const ex x_pt = x.subs(rel); if (x_pt.info(info_flags::numeric)) { if (ex_to_numeric(x_pt).real().is_zero()) throw (std::domain_error("csgn_series(): on imaginary axis")); epvector seq; seq.push_back(expair(csgn(x_pt), _ex0())); return pseries(rel,seq); } epvector seq; seq.push_back(expair(csgn(x_pt), _ex0())); return pseries(rel,seq); } REGISTER_FUNCTION(csgn, eval_func(csgn_eval). evalf_func(csgn_evalf). series_func(csgn_series)); ////////// // dilogarithm ////////// static ex Li2_eval(const ex & x) { if (x.is_zero()) return x; if (x.is_equal(_ex1())) return power(Pi, _ex2()) / _ex6(); if (x.is_equal(_ex_1())) return -power(Pi, _ex2()) / _ex12(); return Li2(x).hold(); } REGISTER_FUNCTION(Li2, eval_func(Li2_eval)); ////////// // trilogarithm ////////// static ex Li3_eval(const ex & x) { if (x.is_zero()) return x; return Li3(x).hold(); } REGISTER_FUNCTION(Li3, eval_func(Li3_eval)); ////////// // factorial ////////// static ex factorial_evalf(const ex & x) { return factorial(x).hold(); } static ex factorial_eval(const ex & x) { if (is_ex_exactly_of_type(x, numeric)) return factorial(ex_to_numeric(x)); else return factorial(x).hold(); } REGISTER_FUNCTION(factorial, eval_func(factorial_eval). evalf_func(factorial_evalf)); ////////// // binomial ////////// static ex binomial_evalf(const ex & x, const ex & y) { return binomial(x, y).hold(); } static ex binomial_eval(const ex & x, const ex &y) { if (is_ex_exactly_of_type(x, numeric) && is_ex_exactly_of_type(y, numeric)) return binomial(ex_to_numeric(x), ex_to_numeric(y)); else return binomial(x, y).hold(); } REGISTER_FUNCTION(binomial, eval_func(binomial_eval). evalf_func(binomial_evalf)); ////////// // Order term function (for truncated power series) ////////// static ex Order_eval(const ex & x) { if (is_ex_exactly_of_type(x, numeric)) { // O(c)=O(1) return Order(_ex1()).hold(); } else if (is_ex_exactly_of_type(x, mul)) { mul *m = static_cast(x.bp); if (is_ex_exactly_of_type(m->op(m->nops() - 1), numeric)) { // O(c*expr)=O(expr) return Order(x / m->op(m->nops() - 1)).hold(); } } return Order(x).hold(); } static ex Order_series(const ex & x, const relational & r, int order) { // Just wrap the function into a pseries object epvector new_seq; GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol)); const symbol *s = static_cast(r.lhs().bp); new_seq.push_back(expair(Order(_ex1()), numeric(min(x.ldegree(*s), order)))); return pseries(r, new_seq); } // Differentiation is handled in function::derivative because of its special requirements REGISTER_FUNCTION(Order, eval_func(Order_eval). series_func(Order_series)); ////////// // Inert partial differentiation operator ////////// static ex Derivative_eval(const ex & f, const ex & l) { if (!is_ex_exactly_of_type(f, function)) { throw(std::invalid_argument("Derivative(): 1st argument must be a function")); } if (!is_ex_exactly_of_type(l, lst)) { throw(std::invalid_argument("Derivative(): 2nd argument must be a list")); } return Derivative(f, l).hold(); } REGISTER_FUNCTION(Derivative, eval_func(Derivative_eval)); ////////// // Solve linear system ////////// ex lsolve(const ex &eqns, const ex &symbols) { // solve a system of linear equations if (eqns.info(info_flags::relation_equal)) { if (!symbols.info(info_flags::symbol)) { throw(std::invalid_argument("lsolve: 2nd argument must be a symbol")); } ex sol=lsolve(lst(eqns),lst(symbols)); GINAC_ASSERT(sol.nops()==1); GINAC_ASSERT(is_ex_exactly_of_type(sol.op(0),relational)); return sol.op(0).op(1); // return rhs of first solution } // syntax checks if (!eqns.info(info_flags::list)) { throw(std::invalid_argument("lsolve: 1st argument must be a list")); } for (unsigned i=0; i