/** @file inifcns.cpp * * Implementation of GiNaC's initially known functions. */ /* * GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "inifcns.h" #include "ex.h" #include "constant.h" #include "lst.h" #include "matrix.h" #include "mul.h" #include "power.h" #include "relational.h" #include "pseries.h" #include "symbol.h" #include "symmetry.h" #include "utils.h" namespace GiNaC { ////////// // absolute value ////////// static ex abs_evalf(const ex & arg) { if (is_exactly_a(arg)) return abs(ex_to(arg)); return abs(arg).hold(); } static ex abs_eval(const ex & arg) { if (is_ex_exactly_of_type(arg, numeric)) return abs(ex_to(arg)); else return abs(arg).hold(); } REGISTER_FUNCTION(abs, eval_func(abs_eval). evalf_func(abs_evalf)); ////////// // Complex sign ////////// static ex csgn_evalf(const ex & arg) { if (is_exactly_a(arg)) return csgn(ex_to(arg)); return csgn(arg).hold(); } static ex csgn_eval(const ex & arg) { if (is_ex_exactly_of_type(arg, numeric)) return csgn(ex_to(arg)); else if (is_ex_of_type(arg, mul) && is_ex_of_type(arg.op(arg.nops()-1),numeric)) { numeric oc = ex_to(arg.op(arg.nops()-1)); if (oc.is_real()) { if (oc > 0) // csgn(42*x) -> csgn(x) return csgn(arg/oc).hold(); else // csgn(-42*x) -> -csgn(x) return -csgn(arg/oc).hold(); } if (oc.real().is_zero()) { if (oc.imag() > 0) // csgn(42*I*x) -> csgn(I*x) return csgn(I*arg/oc).hold(); else // csgn(-42*I*x) -> -csgn(I*x) return -csgn(I*arg/oc).hold(); } } return csgn(arg).hold(); } static ex csgn_series(const ex & arg, const relational & rel, int order, unsigned options) { const ex arg_pt = arg.subs(rel); if (arg_pt.info(info_flags::numeric) && ex_to(arg_pt).real().is_zero() && !(options & series_options::suppress_branchcut)) throw (std::domain_error("csgn_series(): on imaginary axis")); epvector seq; seq.push_back(expair(csgn(arg_pt), _ex0)); return pseries(rel,seq); } REGISTER_FUNCTION(csgn, eval_func(csgn_eval). evalf_func(csgn_evalf). series_func(csgn_series)); ////////// // Eta function: eta(x,y) == log(x*y) - log(x) - log(y). // This function is closely related to the unwinding number K, sometimes found // in modern literature: K(z) == (z-log(exp(z)))/(2*Pi*I). ////////// static ex eta_evalf(const ex &x, const ex &y) { // It seems like we basically have to replicate the eval function here, // since the expression might not be fully evaluated yet. if (x.info(info_flags::positive) || y.info(info_flags::positive)) return _ex0; if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) { const numeric nx = ex_to(x); const numeric ny = ex_to(y); const numeric nxy = ex_to(x*y); int cut = 0; if (nx.is_real() && nx.is_negative()) cut -= 4; if (ny.is_real() && ny.is_negative()) cut -= 4; if (nxy.is_real() && nxy.is_negative()) cut += 4; return evalf(I/4*Pi)*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)- (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut); } return eta(x,y).hold(); } static ex eta_eval(const ex &x, const ex &y) { // trivial: eta(x,c) -> 0 if c is real and positive if (x.info(info_flags::positive) || y.info(info_flags::positive)) return _ex0; if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) { // don't call eta_evalf here because it would call Pi.evalf()! const numeric nx = ex_to(x); const numeric ny = ex_to(y); const numeric nxy = ex_to(x*y); int cut = 0; if (nx.is_real() && nx.is_negative()) cut -= 4; if (ny.is_real() && ny.is_negative()) cut -= 4; if (nxy.is_real() && nxy.is_negative()) cut += 4; return (I/4)*Pi*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)- (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut); } return eta(x,y).hold(); } static ex eta_series(const ex & x, const ex & y, const relational & rel, int order, unsigned options) { const ex x_pt = x.subs(rel); const ex y_pt = y.subs(rel); if ((x_pt.info(info_flags::numeric) && x_pt.info(info_flags::negative)) || (y_pt.info(info_flags::numeric) && y_pt.info(info_flags::negative)) || ((x_pt*y_pt).info(info_flags::numeric) && (x_pt*y_pt).info(info_flags::negative))) throw (std::domain_error("eta_series(): on discontinuity")); epvector seq; seq.push_back(expair(eta(x_pt,y_pt), _ex0)); return pseries(rel,seq); } REGISTER_FUNCTION(eta, eval_func(eta_eval). evalf_func(eta_evalf). series_func(eta_series). latex_name("\\eta"). set_symmetry(sy_symm(0, 1))); ////////// // dilogarithm ////////// static ex Li2_evalf(const ex & x) { if (is_exactly_a(x)) return Li2(ex_to(x)); return Li2(x).hold(); } static ex Li2_eval(const ex & x) { if (x.info(info_flags::numeric)) { // Li2(0) -> 0 if (x.is_zero()) return _ex0; // Li2(1) -> Pi^2/6 if (x.is_equal(_ex1)) return power(Pi,_ex2)/_ex6; // Li2(1/2) -> Pi^2/12 - log(2)^2/2 if (x.is_equal(_ex1_2)) return power(Pi,_ex2)/_ex12 + power(log(_ex2),_ex2)*_ex_1_2; // Li2(-1) -> -Pi^2/12 if (x.is_equal(_ex_1)) return -power(Pi,_ex2)/_ex12; // Li2(I) -> -Pi^2/48+Catalan*I if (x.is_equal(I)) return power(Pi,_ex2)/_ex_48 + Catalan*I; // Li2(-I) -> -Pi^2/48-Catalan*I if (x.is_equal(-I)) return power(Pi,_ex2)/_ex_48 - Catalan*I; // Li2(float) if (!x.info(info_flags::crational)) return Li2(ex_to(x)); } return Li2(x).hold(); } static ex Li2_deriv(const ex & x, unsigned deriv_param) { GINAC_ASSERT(deriv_param==0); // d/dx Li2(x) -> -log(1-x)/x return -log(_ex1-x)/x; } static ex Li2_series(const ex &x, const relational &rel, int order, unsigned options) { const ex x_pt = x.subs(rel); if (x_pt.info(info_flags::numeric)) { // First special case: x==0 (derivatives have poles) if (x_pt.is_zero()) { // method: // The problem is that in d/dx Li2(x==0) == -log(1-x)/x we cannot // simply substitute x==0. The limit, however, exists: it is 1. // We also know all higher derivatives' limits: // (d/dx)^n Li2(x) == n!/n^2. // So the primitive series expansion is // Li2(x==0) == x + x^2/4 + x^3/9 + ... // and so on. // We first construct such a primitive series expansion manually in // a dummy symbol s and then insert the argument's series expansion // for s. Reexpanding the resulting series returns the desired // result. const symbol s; ex ser; // manually construct the primitive expansion for (int i=1; i=1 (branch cut) if (!(options & series_options::suppress_branchcut) && ex_to(x_pt).is_real() && ex_to(x_pt)>1) { // method: // This is the branch cut: assemble the primitive series manually // and then add the corresponding complex step function. const symbol &s = ex_to(rel.lhs()); const ex point = rel.rhs(); const symbol foo; epvector seq; // zeroth order term: seq.push_back(expair(Li2(x_pt), _ex0)); // compute the intermediate terms: ex replarg = series(Li2(x), s==foo, order); for (unsigned i=1; i(x)); else return factorial(x).hold(); } REGISTER_FUNCTION(factorial, eval_func(factorial_eval). evalf_func(factorial_evalf)); ////////// // binomial ////////// static ex binomial_evalf(const ex & x, const ex & y) { return binomial(x, y).hold(); } static ex binomial_eval(const ex & x, const ex &y) { if (is_ex_exactly_of_type(x, numeric) && is_ex_exactly_of_type(y, numeric)) return binomial(ex_to(x), ex_to(y)); else return binomial(x, y).hold(); } REGISTER_FUNCTION(binomial, eval_func(binomial_eval). evalf_func(binomial_evalf)); ////////// // Order term function (for truncated power series) ////////// static ex Order_eval(const ex & x) { if (is_ex_exactly_of_type(x, numeric)) { // O(c) -> O(1) or 0 if (!x.is_zero()) return Order(_ex1).hold(); else return _ex0; } else if (is_ex_exactly_of_type(x, mul)) { const mul &m = ex_to(x); // O(c*expr) -> O(expr) if (is_ex_exactly_of_type(m.op(m.nops() - 1), numeric)) return Order(x / m.op(m.nops() - 1)).hold(); } return Order(x).hold(); } static ex Order_series(const ex & x, const relational & r, int order, unsigned options) { // Just wrap the function into a pseries object epvector new_seq; GINAC_ASSERT(is_exactly_a(r.lhs())); const symbol &s = ex_to(r.lhs()); new_seq.push_back(expair(Order(_ex1), numeric(std::min(x.ldegree(s), order)))); return pseries(r, new_seq); } // Differentiation is handled in function::derivative because of its special requirements REGISTER_FUNCTION(Order, eval_func(Order_eval). series_func(Order_series). latex_name("\\mathcal{O}")); ////////// // Solve linear system ////////// ex lsolve(const ex &eqns, const ex &symbols, unsigned options) { // solve a system of linear equations if (eqns.info(info_flags::relation_equal)) { if (!symbols.info(info_flags::symbol)) throw(std::invalid_argument("lsolve(): 2nd argument must be a symbol")); const ex sol = lsolve(lst(eqns),lst(symbols)); GINAC_ASSERT(sol.nops()==1); GINAC_ASSERT(is_exactly_a(sol.op(0))); return sol.op(0).op(1); // return rhs of first solution } // syntax checks if (!eqns.info(info_flags::list)) { throw(std::invalid_argument("lsolve(): 1st argument must be a list")); } for (unsigned i=0; i(symbols.op(c)),1); linpart -= co*symbols.op(c); sys(r,c) = co; } linpart = linpart.expand(); rhs(r,0) = -linpart; } // test if system is linear and fill vars matrix for (unsigned i=0; i