/** @file indexed.cpp * * Implementation of GiNaC's indexed expressions. */ /* * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "indexed.h" #include "idx.h" #include "add.h" #include "mul.h" #include "ncmul.h" #include "power.h" #include "relational.h" #include "symmetry.h" #include "operators.h" #include "lst.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(indexed, exprseq, print_func(&indexed::do_print). print_func(&indexed::do_print_latex). print_func(&indexed::do_print_tree)) ////////// // default constructor ////////// indexed::indexed() : symtree(sy_none()) { tinfo_key = TINFO_indexed; } ////////// // other constructors ////////// indexed::indexed(const ex & b) : inherited(b), symtree(sy_none()) { tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const ex & b, const ex & i1) : inherited(b, i1), symtree(sy_none()) { tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const ex & b, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(sy_none()) { tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(sy_none()) { tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(sy_none()) { tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(symm) { tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(symm) { tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(symm) { tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const ex & b, const exvector & v) : inherited(b), symtree(sy_none()) { seq.insert(seq.end(), v.begin(), v.end()); tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const ex & b, const symmetry & symm, const exvector & v) : inherited(b), symtree(symm) { seq.insert(seq.end(), v.begin(), v.end()); tinfo_key = TINFO_indexed; validate(); } indexed::indexed(const symmetry & symm, const exprseq & es) : inherited(es), symtree(symm) { tinfo_key = TINFO_indexed; } indexed::indexed(const symmetry & symm, const exvector & v, bool discardable) : inherited(v, discardable), symtree(symm) { tinfo_key = TINFO_indexed; } indexed::indexed(const symmetry & symm, std::auto_ptr vp) : inherited(vp), symtree(symm) { tinfo_key = TINFO_indexed; } ////////// // archiving ////////// indexed::indexed(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) { if (!n.find_ex("symmetry", symtree, sym_lst)) { // GiNaC versions <= 0.9.0 had an unsigned "symmetry" property unsigned symm = 0; n.find_unsigned("symmetry", symm); switch (symm) { case 1: symtree = sy_symm(); break; case 2: symtree = sy_anti(); break; default: symtree = sy_none(); break; } const_cast(ex_to(symtree)).validate(seq.size() - 1); } } void indexed::archive(archive_node &n) const { inherited::archive(n); n.add_ex("symmetry", symtree); } DEFAULT_UNARCHIVE(indexed) ////////// // functions overriding virtual functions from base classes ////////// void indexed::printindices(const print_context & c, unsigned level) const { if (seq.size() > 1) { exvector::const_iterator it=seq.begin() + 1, itend = seq.end(); if (is_a(c)) { // TeX output: group by variance bool first = true; bool covariant = true; while (it != itend) { bool cur_covariant = (is_a(*it) ? ex_to(*it).is_covariant() : true); if (first || cur_covariant != covariant) { // Variance changed // The empty {} prevents indices from ending up on top of each other if (!first) c.s << "}{}"; covariant = cur_covariant; if (covariant) c.s << "_{"; else c.s << "^{"; } it->print(c, level); c.s << " "; first = false; it++; } c.s << "}"; } else { // Ordinary output while (it != itend) { it->print(c, level); it++; } } } } void indexed::print_indexed(const print_context & c, const char *openbrace, const char *closebrace, unsigned level) const { if (precedence() <= level) c.s << openbrace << '('; c.s << openbrace; seq[0].print(c, precedence()); c.s << closebrace; printindices(c, level); if (precedence() <= level) c.s << ')' << closebrace; } void indexed::do_print(const print_context & c, unsigned level) const { print_indexed(c, "", "", level); } void indexed::do_print_latex(const print_latex & c, unsigned level) const { print_indexed(c, "{", "}", level); } void indexed::do_print_tree(const print_tree & c, unsigned level) const { c.s << std::string(level, ' ') << class_name() << " @" << this << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << ", " << seq.size()-1 << " indices" << ", symmetry=" << symtree << std::endl; seq[0].print(c, level + c.delta_indent); printindices(c, level + c.delta_indent); } bool indexed::info(unsigned inf) const { if (inf == info_flags::indexed) return true; if (inf == info_flags::has_indices) return seq.size() > 1; return inherited::info(inf); } struct idx_is_not : public std::binary_function { bool operator() (const ex & e, unsigned inf) const { return !(ex_to(e).get_value().info(inf)); } }; bool indexed::all_index_values_are(unsigned inf) const { // No indices? Then no property can be fulfilled if (seq.size() < 2) return false; // Check all indices return find_if(seq.begin() + 1, seq.end(), bind2nd(idx_is_not(), inf)) == seq.end(); } int indexed::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); return inherited::compare_same_type(other); } ex indexed::eval(int level) const { // First evaluate children, then we will end up here again if (level > 1) return indexed(ex_to(symtree), evalchildren(level)); const ex &base = seq[0]; // If the base object is 0, the whole object is 0 if (base.is_zero()) return _ex0; // If the base object is a product, pull out the numeric factor if (is_exactly_a(base) && is_exactly_a(base.op(base.nops() - 1))) { exvector v(seq); ex f = ex_to(base.op(base.nops() - 1)); v[0] = seq[0] / f; return f * thiscontainer(v); } // Canonicalize indices according to the symmetry properties if (seq.size() > 2) { exvector v = seq; GINAC_ASSERT(is_exactly_a(symtree)); int sig = canonicalize(v.begin() + 1, ex_to(symtree)); if (sig != INT_MAX) { // Something has changed while sorting indices, more evaluations later if (sig == 0) return _ex0; return ex(sig) * thiscontainer(v); } } // Let the class of the base object perform additional evaluations return ex_to(base).eval_indexed(*this); } ex indexed::thiscontainer(const exvector & v) const { return indexed(ex_to(symtree), v); } ex indexed::thiscontainer(std::auto_ptr vp) const { return indexed(ex_to(symtree), vp); } ex indexed::expand(unsigned options) const { GINAC_ASSERT(seq.size() > 0); if ((options & expand_options::expand_indexed) && is_exactly_a(seq[0])) { // expand_indexed expands (a+b).i -> a.i + b.i const ex & base = seq[0]; ex sum = _ex0; for (size_t i=0; i 0); exvector::const_iterator it = seq.begin() + 1, itend = seq.end(); while (it != itend) { if (!is_a(*it)) throw(std::invalid_argument("indices of indexed object must be of type idx")); it++; } if (!symtree.is_zero()) { if (!is_exactly_a(symtree)) throw(std::invalid_argument("symmetry of indexed object must be of type symmetry")); const_cast(ex_to(symtree)).validate(seq.size() - 1); } } /** Implementation of ex::diff() for an indexed object always returns 0. * * @see ex::diff */ ex indexed::derivative(const symbol & s) const { return _ex0; } ////////// // global functions ////////// struct idx_is_equal_ignore_dim : public std::binary_function { bool operator() (const ex &lh, const ex &rh) const { if (lh.is_equal(rh)) return true; else try { // Replacing the dimension might cause an error (e.g. with // index classes that only work in a fixed number of dimensions) return lh.is_equal(ex_to(rh).replace_dim(ex_to(lh).get_dim())); } catch (...) { return false; } } }; /** Check whether two sorted index vectors are consistent (i.e. equal). */ static bool indices_consistent(const exvector & v1, const exvector & v2) { // Number of indices must be the same if (v1.size() != v2.size()) return false; return equal(v1.begin(), v1.end(), v2.begin(), idx_is_equal_ignore_dim()); } exvector indexed::get_indices() const { GINAC_ASSERT(seq.size() >= 1); return exvector(seq.begin() + 1, seq.end()); } exvector indexed::get_dummy_indices() const { exvector free_indices, dummy_indices; find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices); return dummy_indices; } exvector indexed::get_dummy_indices(const indexed & other) const { exvector indices = get_free_indices(); exvector other_indices = other.get_free_indices(); indices.insert(indices.end(), other_indices.begin(), other_indices.end()); exvector dummy_indices; find_dummy_indices(indices, dummy_indices); return dummy_indices; } bool indexed::has_dummy_index_for(const ex & i) const { exvector::const_iterator it = seq.begin() + 1, itend = seq.end(); while (it != itend) { if (is_dummy_pair(*it, i)) return true; it++; } return false; } exvector indexed::get_free_indices() const { exvector free_indices, dummy_indices; find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices); return free_indices; } exvector add::get_free_indices() const { exvector free_indices; for (size_t i=0; i 0) { if (find_if(global_dummy_indices.begin(), global_dummy_indices.end(), bind2nd(op0_is_equal(), *it)) == global_dummy_indices.end()) { global_dummy_indices.push_back(*it); global_size++; remaining--; } it++; } // If this is the first set of local indices, do nothing if (old_global_size == 0) return e; } GINAC_ASSERT(local_size <= global_size); // Construct vectors of index symbols exvector local_syms, global_syms; local_syms.reserve(local_size); global_syms.reserve(local_size); for (size_t i=0; i(local_uniq), ex_is_less()); set_difference(global_syms.begin(), global_syms.end(), local_syms.begin(), local_syms.end(), std::back_insert_iterator(global_uniq), ex_is_less()); // Replace remaining non-common local index symbols by global ones if (local_uniq.empty()) return e; else { while (global_uniq.size() > local_uniq.size()) global_uniq.pop_back(); return e.subs(lst(local_uniq.begin(), local_uniq.end()), lst(global_uniq.begin(), global_uniq.end()), subs_options::no_pattern); } } /** Given a set of indices, extract those of class varidx. */ static void find_variant_indices(const exvector & v, exvector & variant_indices) { exvector::const_iterator it1, itend; for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) { if (is_exactly_a(*it1)) variant_indices.push_back(*it1); } } /** Raise/lower dummy indices in a single indexed objects to canonicalize their * variance. * * @param e Object to work on * @param variant_dummy_indices The set of indices that might need repositioning (will be changed by this function) * @param moved_indices The set of indices that have been repositioned (will be changed by this function) * @return true if 'e' was changed */ bool reposition_dummy_indices(ex & e, exvector & variant_dummy_indices, exvector & moved_indices) { bool something_changed = false; // If a dummy index is encountered for the first time in the // product, pull it up, otherwise, pull it down exvector::const_iterator it2, it2start, it2end; for (it2start = ex_to(e).seq.begin(), it2end = ex_to(e).seq.end(), it2 = it2start + 1; it2 != it2end; ++it2) { if (!is_exactly_a(*it2)) continue; exvector::iterator vit, vitend; for (vit = variant_dummy_indices.begin(), vitend = variant_dummy_indices.end(); vit != vitend; ++vit) { if (it2->op(0).is_equal(vit->op(0))) { if (ex_to(*it2).is_covariant()) { e = e.subs(lst( *it2 == ex_to(*it2).toggle_variance(), ex_to(*it2).toggle_variance() == *it2 ), subs_options::no_pattern); something_changed = true; it2 = ex_to(e).seq.begin() + (it2 - it2start); it2start = ex_to(e).seq.begin(); it2end = ex_to(e).seq.end(); } moved_indices.push_back(*vit); variant_dummy_indices.erase(vit); goto next_index; } } for (vit = moved_indices.begin(), vitend = moved_indices.end(); vit != vitend; ++vit) { if (it2->op(0).is_equal(vit->op(0))) { if (ex_to(*it2).is_contravariant()) { e = e.subs(*it2 == ex_to(*it2).toggle_variance(), subs_options::no_pattern); something_changed = true; it2 = ex_to(e).seq.begin() + (it2 - it2start); it2start = ex_to(e).seq.begin(); it2end = ex_to(e).seq.end(); } goto next_index; } } next_index: ; } return something_changed; } /* Ordering that only compares the base expressions of indexed objects. */ struct ex_base_is_less : public std::binary_function { bool operator() (const ex &lh, const ex &rh) const { return (is_a(lh) ? lh.op(0) : lh).compare(is_a(rh) ? rh.op(0) : rh) < 0; } }; /** Simplify product of indexed expressions (commutative, noncommutative and * simple squares), return list of free indices. */ ex simplify_indexed_product(const ex & e, exvector & free_indices, exvector & dummy_indices, const scalar_products & sp) { // Remember whether the product was commutative or noncommutative // (because we chop it into factors and need to reassemble later) bool non_commutative = is_exactly_a(e); // Collect factors in an exvector, store squares twice exvector v; v.reserve(e.nops() * 2); if (is_exactly_a(e)) { // We only get called for simple squares, split a^2 -> a*a GINAC_ASSERT(e.op(1).is_equal(_ex2)); v.push_back(e.op(0)); v.push_back(e.op(0)); } else { for (size_t i=0; i(f) && f.op(1).is_equal(_ex2)) { v.push_back(f.op(0)); v.push_back(f.op(0)); } else if (is_exactly_a(f)) { // Noncommutative factor found, split it as well non_commutative = true; // everything becomes noncommutative, ncmul will sort out the commutative factors later for (size_t j=0; j 1); exvector::iterator it1, itend = v.end(), next_to_last = itend - 1; for (it1 = v.begin(); it1 != next_to_last; it1++) { try_again: if (!is_a(*it1)) continue; bool first_noncommutative = (it1->return_type() != return_types::commutative); // Indexed factor found, get free indices and look for contraction // candidates exvector free1, dummy1; find_free_and_dummy(ex_to(*it1).seq.begin() + 1, ex_to(*it1).seq.end(), free1, dummy1); exvector::iterator it2; for (it2 = it1 + 1; it2 != itend; it2++) { if (!is_a(*it2)) continue; bool second_noncommutative = (it2->return_type() != return_types::commutative); // Find free indices of second factor and merge them with free // indices of first factor exvector un; find_free_and_dummy(ex_to(*it2).seq.begin() + 1, ex_to(*it2).seq.end(), un, dummy1); un.insert(un.end(), free1.begin(), free1.end()); // Check whether the two factors share dummy indices exvector free, dummy; find_free_and_dummy(un, free, dummy); size_t num_dummies = dummy.size(); if (num_dummies == 0) continue; // At least one dummy index, is it a defined scalar product? bool contracted = false; if (free.empty()) { // Find minimal dimension of all indices of both factors exvector::const_iterator dit = ex_to(*it1).seq.begin() + 1, ditend = ex_to(*it1).seq.end(); ex dim = ex_to(*dit).get_dim(); ++dit; for (; dit != ditend; ++dit) { dim = minimal_dim(dim, ex_to(*dit).get_dim()); } dit = ex_to(*it2).seq.begin() + 1; ditend = ex_to(*it2).seq.end(); for (; dit != ditend; ++dit) { dim = minimal_dim(dim, ex_to(*dit).get_dim()); } // User-defined scalar product? if (sp.is_defined(*it1, *it2, dim)) { // Yes, substitute it *it1 = sp.evaluate(*it1, *it2, dim); *it2 = _ex1; goto contraction_done; } } // Try to contract the first one with the second one contracted = ex_to(it1->op(0)).contract_with(it1, it2, v); if (!contracted) { // That didn't work; maybe the second object knows how to // contract itself with the first one contracted = ex_to(it2->op(0)).contract_with(it2, it1, v); } if (contracted) { contraction_done: if (first_noncommutative || second_noncommutative || is_exactly_a(*it1) || is_exactly_a(*it2) || is_exactly_a(*it1) || is_exactly_a(*it2) || is_exactly_a(*it1) || is_exactly_a(*it2)) { // One of the factors became a sum or product: // re-expand expression and run again // Non-commutative products are always re-expanded to give // eval_ncmul() the chance to re-order and canonicalize // the product ex r = (non_commutative ? ex(ncmul(v, true)) : ex(mul(v))); return simplify_indexed(r, free_indices, dummy_indices, sp); } // Both objects may have new indices now or they might // even not be indexed objects any more, so we have to // start over something_changed = true; goto try_again; } } } // Find free indices (concatenate them all and call find_free_and_dummy()) // and all dummy indices that appear exvector un, individual_dummy_indices; for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) { exvector free_indices_of_factor; if (is_a(*it1)) { exvector dummy_indices_of_factor; find_free_and_dummy(ex_to(*it1).seq.begin() + 1, ex_to(*it1).seq.end(), free_indices_of_factor, dummy_indices_of_factor); individual_dummy_indices.insert(individual_dummy_indices.end(), dummy_indices_of_factor.begin(), dummy_indices_of_factor.end()); } else free_indices_of_factor = it1->get_free_indices(); un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end()); } exvector local_dummy_indices; find_free_and_dummy(un, free_indices, local_dummy_indices); local_dummy_indices.insert(local_dummy_indices.end(), individual_dummy_indices.begin(), individual_dummy_indices.end()); // Filter out the dummy indices with variance exvector variant_dummy_indices; find_variant_indices(local_dummy_indices, variant_dummy_indices); // Any indices with variance present at all? if (!variant_dummy_indices.empty()) { // Yes, bring the product into a canonical order that only depends on // the base expressions of indexed objects if (!non_commutative) std::sort(v.begin(), v.end(), ex_base_is_less()); exvector moved_indices; // Iterate over all indexed objects in the product for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) { if (!is_a(*it1)) continue; if (reposition_dummy_indices(*it1, variant_dummy_indices, moved_indices)) something_changed = true; } } ex r; if (something_changed) r = non_commutative ? ex(ncmul(v, true)) : ex(mul(v)); else r = e; // The result should be symmetric with respect to exchange of dummy // indices, so if the symmetrization vanishes, the whole expression is // zero. This detects things like eps.i.j.k * p.j * p.k = 0. if (local_dummy_indices.size() >= 2) { exvector dummy_syms; dummy_syms.reserve(local_dummy_indices.size()); for (exvector::const_iterator it = local_dummy_indices.begin(); it != local_dummy_indices.end(); ++it) dummy_syms.push_back(it->op(0)); if (symmetrize(r, dummy_syms).is_zero()) { free_indices.clear(); return _ex0; } } // Dummy index renaming r = rename_dummy_indices(r, dummy_indices, local_dummy_indices); // Product of indexed object with a scalar? if (is_exactly_a(r) && r.nops() == 2 && is_exactly_a(r.op(1)) && is_a(r.op(0))) return ex_to(r.op(0).op(0)).scalar_mul_indexed(r.op(0), ex_to(r.op(1))); else return r; } /** This structure stores the original and symmetrized versions of terms * obtained during the simplification of sums. */ class terminfo { public: terminfo(const ex & orig_, const ex & symm_) : orig(orig_), symm(symm_) {} ex orig; /**< original term */ ex symm; /**< symmtrized term */ }; class terminfo_is_less { public: bool operator() (const terminfo & ti1, const terminfo & ti2) const { return (ti1.symm.compare(ti2.symm) < 0); } }; /** This structure stores the individual symmetrized terms obtained during * the simplification of sums. */ class symminfo { public: symminfo() : num(0) {} symminfo(const ex & symmterm_, const ex & orig_, size_t num_) : orig(orig_), num(num_) { if (is_exactly_a(symmterm_) && is_exactly_a(symmterm_.op(symmterm_.nops()-1))) { coeff = symmterm_.op(symmterm_.nops()-1); symmterm = symmterm_ / coeff; } else { coeff = 1; symmterm = symmterm_; } } ex symmterm; /**< symmetrized term */ ex coeff; /**< coefficient of symmetrized term */ ex orig; /**< original term */ size_t num; /**< how many symmetrized terms resulted from the original term */ }; class symminfo_is_less_by_symmterm { public: bool operator() (const symminfo & si1, const symminfo & si2) const { return (si1.symmterm.compare(si2.symmterm) < 0); } }; class symminfo_is_less_by_orig { public: bool operator() (const symminfo & si1, const symminfo & si2) const { return (si1.orig.compare(si2.orig) < 0); } }; /** Simplify indexed expression, return list of free indices. */ ex simplify_indexed(const ex & e, exvector & free_indices, exvector & dummy_indices, const scalar_products & sp) { // Expand the expression ex e_expanded = e.expand(); // Simplification of single indexed object: just find the free indices // and perform dummy index renaming/repositioning if (is_a(e_expanded)) { // Find the dummy indices const indexed &i = ex_to(e_expanded); exvector local_dummy_indices; find_free_and_dummy(i.seq.begin() + 1, i.seq.end(), free_indices, local_dummy_indices); // Filter out the dummy indices with variance exvector variant_dummy_indices; find_variant_indices(local_dummy_indices, variant_dummy_indices); // Any indices with variance present at all? if (!variant_dummy_indices.empty()) { // Yes, reposition them exvector moved_indices; reposition_dummy_indices(e_expanded, variant_dummy_indices, moved_indices); } // Rename the dummy indices return rename_dummy_indices(e_expanded, dummy_indices, local_dummy_indices); } // Simplification of sum = sum of simplifications, check consistency of // free indices in each term if (is_exactly_a(e_expanded)) { bool first = true; ex sum; free_indices.clear(); for (size_t i=0; i(sum) && is_a(term)) sum = ex_to(sum.op(0)).add_indexed(sum, term); else sum += term; } } } // If the sum turns out to be zero, we are finished if (sum.is_zero()) { free_indices.clear(); return sum; } // More than one term and more than one dummy index? size_t num_terms_orig = (is_exactly_a(sum) ? sum.nops() : 1); if (num_terms_orig < 2 || dummy_indices.size() < 2) return sum; // Yes, construct vector of all dummy index symbols exvector dummy_syms; dummy_syms.reserve(dummy_indices.size()); for (exvector::const_iterator it = dummy_indices.begin(); it != dummy_indices.end(); ++it) dummy_syms.push_back(it->op(0)); // Chop the sum into terms and symmetrize each one over the dummy // indices std::vector terms; for (size_t i=0; i terms_pass2; for (std::vector::const_iterator i=terms.begin(); i!=terms.end(); ) { size_t num = 1; std::vector::const_iterator j = i + 1; while (j != terms.end() && j->symm == i->symm) { num++; j++; } terms_pass2.push_back(terminfo(i->orig * num, i->symm * num)); i = j; } // If there is only one term left, we are finished if (terms_pass2.size() == 1) return terms_pass2[0].orig; // Chop the symmetrized terms into subterms std::vector sy; for (std::vector::const_iterator i=terms_pass2.begin(); i!=terms_pass2.end(); ++i) { if (is_exactly_a(i->symm)) { size_t num = i->symm.nops(); for (size_t j=0; jsymm.op(j), i->orig, num)); } else sy.push_back(symminfo(i->symm, i->orig, 1)); } // Sort by symmetrized subterms std::sort(sy.begin(), sy.end(), symminfo_is_less_by_symmterm()); // Combine equal symmetrized subterms std::vector sy_pass2; exvector result; for (std::vector::const_iterator i=sy.begin(); i!=sy.end(); ) { // Combine equal terms std::vector::const_iterator j = i + 1; if (j != sy.end() && j->symmterm == i->symmterm) { // More than one term, collect the coefficients ex coeff = i->coeff; while (j != sy.end() && j->symmterm == i->symmterm) { coeff += j->coeff; j++; } // Add combined term to result if (!coeff.is_zero()) result.push_back(coeff * i->symmterm); } else { // Single term, store for second pass sy_pass2.push_back(*i); } i = j; } // Were there any remaining terms that didn't get combined? if (sy_pass2.size() > 0) { // Yes, sort by their original terms std::sort(sy_pass2.begin(), sy_pass2.end(), symminfo_is_less_by_orig()); for (std::vector::const_iterator i=sy_pass2.begin(); i!=sy_pass2.end(); ) { // How many symmetrized terms of this original term are left? size_t num = 1; std::vector::const_iterator j = i + 1; while (j != sy_pass2.end() && j->orig == i->orig) { num++; j++; } if (num == i->num) { // All terms left, then add the original term to the result result.push_back(i->orig); } else { // Some terms were combined with others, add up the remaining symmetrized terms std::vector::const_iterator k; for (k=i; k!=j; k++) result.push_back(k->coeff * k->symmterm); } i = j; } } // Add all resulting terms ex sum_symm = (new add(result))->setflag(status_flags::dynallocated); if (sum_symm.is_zero()) free_indices.clear(); return sum_symm; } // Simplification of products if (is_exactly_a(e_expanded) || is_exactly_a(e_expanded) || (is_exactly_a(e_expanded) && is_a(e_expanded.op(0)) && e_expanded.op(1).is_equal(_ex2))) return simplify_indexed_product(e_expanded, free_indices, dummy_indices, sp); // Cannot do anything free_indices.clear(); return e_expanded; } /** Simplify/canonicalize expression containing indexed objects. This * performs contraction of dummy indices where possible and checks whether * the free indices in sums are consistent. * * @return simplified expression */ ex ex::simplify_indexed() const { exvector free_indices, dummy_indices; scalar_products sp; return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp); } /** Simplify/canonicalize expression containing indexed objects. This * performs contraction of dummy indices where possible, checks whether * the free indices in sums are consistent, and automatically replaces * scalar products by known values if desired. * * @param sp Scalar products to be replaced automatically * @return simplified expression */ ex ex::simplify_indexed(const scalar_products & sp) const { exvector free_indices, dummy_indices; return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp); } /** Symmetrize expression over its free indices. */ ex ex::symmetrize() const { return GiNaC::symmetrize(*this, get_free_indices()); } /** Antisymmetrize expression over its free indices. */ ex ex::antisymmetrize() const { return GiNaC::antisymmetrize(*this, get_free_indices()); } /** Symmetrize expression by cyclic permutation over its free indices. */ ex ex::symmetrize_cyclic() const { return GiNaC::symmetrize_cyclic(*this, get_free_indices()); } ////////// // helper classes ////////// spmapkey::spmapkey(const ex & v1_, const ex & v2_, const ex & dim_) : dim(dim_) { // If indexed, extract base objects ex s1 = is_a(v1_) ? v1_.op(0) : v1_; ex s2 = is_a(v2_) ? v2_.op(0) : v2_; // Enforce canonical order in pair if (s1.compare(s2) > 0) { v1 = s2; v2 = s1; } else { v1 = s1; v2 = s2; } } bool spmapkey::operator==(const spmapkey &other) const { if (!v1.is_equal(other.v1)) return false; if (!v2.is_equal(other.v2)) return false; if (is_a(dim) || is_a(other.dim)) return true; else return dim.is_equal(other.dim); } bool spmapkey::operator<(const spmapkey &other) const { int cmp = v1.compare(other.v1); if (cmp) return cmp < 0; cmp = v2.compare(other.v2); if (cmp) return cmp < 0; // Objects are equal, now check dimensions if (is_a(dim) || is_a(other.dim)) return false; else return dim.compare(other.dim) < 0; } void spmapkey::debugprint() const { std::cerr << "(" << v1 << "," << v2 << "," << dim << ")"; } void scalar_products::add(const ex & v1, const ex & v2, const ex & sp) { spm[spmapkey(v1, v2)] = sp; } void scalar_products::add(const ex & v1, const ex & v2, const ex & dim, const ex & sp) { spm[spmapkey(v1, v2, dim)] = sp; } void scalar_products::add_vectors(const lst & l, const ex & dim) { // Add all possible pairs of products for (lst::const_iterator it1 = l.begin(); it1 != l.end(); ++it1) for (lst::const_iterator it2 = l.begin(); it2 != l.end(); ++it2) add(*it1, *it2, *it1 * *it2); } void scalar_products::clear() { spm.clear(); } /** Check whether scalar product pair is defined. */ bool scalar_products::is_defined(const ex & v1, const ex & v2, const ex & dim) const { return spm.find(spmapkey(v1, v2, dim)) != spm.end(); } /** Return value of defined scalar product pair. */ ex scalar_products::evaluate(const ex & v1, const ex & v2, const ex & dim) const { return spm.find(spmapkey(v1, v2, dim))->second; } void scalar_products::debugprint() const { std::cerr << "map size=" << spm.size() << std::endl; spmap::const_iterator i = spm.begin(), end = spm.end(); while (i != end) { const spmapkey & k = i->first; std::cerr << "item key="; k.debugprint(); std::cerr << ", value=" << i->second << std::endl; ++i; } } } // namespace GiNaC