/** @file idx.h * * Interface to GiNaC's indices. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef __GINAC_IDX_H__ #define __GINAC_IDX_H__ #include "ex.h" #include "numeric.h" namespace GiNaC { /** This class holds one index of an indexed object. Indices can * theoretically consist of any symbolic expression but they are usually * only just a symbol (e.g. "mu", "i") or numeric (integer). Indices belong * to a space with a certain numeric or symbolic dimension. */ class idx : public basic { GINAC_DECLARE_REGISTERED_CLASS(idx, basic) // other constructors public: /** Construct index with given value and dimension. * * @param v Value of index (numeric or symbolic) * @param dim Dimension of index space (numeric or symbolic) * @return newly constructed index */ explicit idx(const ex & v, const ex & dim); // functions overriding virtual functions from base classes public: void print(const print_context & c, unsigned level = 0) const; bool info(unsigned inf) const; unsigned nops() const; ex & let_op(int i); ex evalf(int level = 0) const; ex subs(const lst & ls, const lst & lr, bool no_pattern = false) const; protected: ex derivative(const symbol & s) const; bool match_same_type(const basic & other) const; // new virtual functions in this class public: /** Check whether the index forms a dummy index pair with another index * of the same type. */ virtual bool is_dummy_pair_same_type(const basic & other) const; // non-virtual functions in this class public: /** Get value of index. */ ex get_value(void) const {return value;} /** Check whether the index is numeric. */ bool is_numeric(void) const {return is_exactly_a(value);} /** Check whether the index is symbolic. */ bool is_symbolic(void) const {return !is_exactly_a(value);} /** Get dimension of index space. */ ex get_dim(void) const {return dim;} /** Check whether the dimension is numeric. */ bool is_dim_numeric(void) const {return is_exactly_a(dim);} /** Check whether the dimension is symbolic. */ bool is_dim_symbolic(void) const {return !is_exactly_a(dim);} protected: ex value; /**< Expression that constitutes the index (numeric or symbolic name) */ ex dim; /**< Dimension of space (can be symbolic or numeric) */ }; /** This class holds an index with a variance (co- or contravariant). There * is an associated metric tensor that can be used to raise/lower indices. */ class varidx : public idx { GINAC_DECLARE_REGISTERED_CLASS(varidx, idx) // other constructors public: /** Construct index with given value, dimension and variance. * * @param v Value of index (numeric or symbolic) * @param dim Dimension of index space (numeric or symbolic) * @param covariant Make covariant index (default is contravariant) * @return newly constructed index */ varidx(const ex & v, const ex & dim, bool covariant = false); // functions overriding virtual functions from base classes public: void print(const print_context & c, unsigned level = 0) const; bool is_dummy_pair_same_type(const basic & other) const; protected: bool match_same_type(const basic & other) const; // non-virtual functions in this class public: /** Check whether the index is covariant. */ bool is_covariant(void) const {return covariant;} /** Check whether the index is contravariant (not covariant). */ bool is_contravariant(void) const {return !covariant;} /** Make a new index with the same value but the opposite variance. */ ex toggle_variance(void) const; // member variables protected: bool covariant; /**< x.mu, default is contravariant: x~mu */ }; /** This class holds a spinor index that can be dotted or undotted and that * also has a variance. This is used in the Weyl-van-der-Waerden formalism * where the dot indicates complex conjugation. There is an associated * (asymmetric) metric tensor that can be used to raise/lower spinor * indices. */ class spinidx : public varidx { GINAC_DECLARE_REGISTERED_CLASS(spinidx, varidx) // other constructors public: /** Construct index with given value, dimension, variance and dot. * * @param v Value of index (numeric or symbolic) * @param dim Dimension of index space (numeric or symbolic) * @param covariant Make covariant index (default is contravariant) * @param dotted Make covariant dotted (default is undotted) * @return newly constructed index */ spinidx(const ex & v, const ex & dim = 2, bool covariant = false, bool dotted = false); // functions overriding virtual functions from base classes public: void print(const print_context & c, unsigned level = 0) const; bool is_dummy_pair_same_type(const basic & other) const; protected: bool match_same_type(const basic & other) const; // non-virtual functions in this class public: /** Check whether the index is dotted. */ bool is_dotted(void) const {return dotted;} /** Check whether the index is not dotted. */ bool is_undotted(void) const {return !dotted;} /** Make a new index with the same value and variance but the opposite * dottedness. */ ex toggle_dot(void) const; /** Make a new index with the same value but opposite variance and * dottedness. */ ex toggle_variance_dot(void) const; // member variables protected: bool dotted; }; // utility functions /** Specialization of is_exactly_a(obj) for idx objects. */ template<> inline bool is_exactly_a(const basic & obj) { return obj.tinfo()==TINFO_idx; } /** Specialization of is_exactly_a(obj) for varidx objects. */ template<> inline bool is_exactly_a(const basic & obj) { return obj.tinfo()==TINFO_varidx; } /** Specialization of is_exactly_a(obj) for spinidx objects. */ template<> inline bool is_exactly_a(const basic & obj) { return obj.tinfo()==TINFO_spinidx; } /** Check whether two indices form a dummy pair. */ bool is_dummy_pair(const idx & i1, const idx & i2); /** Check whether two expressions form a dummy index pair. */ bool is_dummy_pair(const ex & e1, const ex & e2); /** Given a vector of indices, split them into two vectors, one containing * the free indices, the other containing the dummy indices (numeric * indices are neither free nor dummy ones). * * @param it Pointer to start of index vector * @param itend Pointer to end of index vector * @param out_free Vector of free indices (returned, sorted) * @param out_dummy Vector of dummy indices (returned, sorted) */ void find_free_and_dummy(exvector::const_iterator it, exvector::const_iterator itend, exvector & out_free, exvector & out_dummy); /** Given a vector of indices, split them into two vectors, one containing * the free indices, the other containing the dummy indices (numeric * indices are neither free nor dummy ones). * * @param v Index vector * @param out_free Vector of free indices (returned, sorted) * @param out_dummy Vector of dummy indices (returned, sorted) */ inline void find_free_and_dummy(const exvector & v, exvector & out_free, exvector & out_dummy) { find_free_and_dummy(v.begin(), v.end(), out_free, out_dummy); } /** Given a vector of indices, find the dummy indices. * * @param v Index vector * @param out_dummy Vector of dummy indices (returned, sorted) */ inline void find_dummy_indices(const exvector & v, exvector & out_dummy) { exvector free_indices; find_free_and_dummy(v.begin(), v.end(), free_indices, out_dummy); } /** Count the number of dummy index pairs in an index vector. */ inline unsigned count_dummy_indices(const exvector & v) { exvector free_indices, dummy_indices; find_free_and_dummy(v.begin(), v.end(), free_indices, dummy_indices); return dummy_indices.size(); } /** Count the number of dummy index pairs in an index vector. */ inline unsigned count_free_indices(const exvector & v) { exvector free_indices, dummy_indices; find_free_and_dummy(v.begin(), v.end(), free_indices, dummy_indices); return free_indices.size(); } } // namespace GiNaC #endif // ndef __GINAC_IDX_H__