/** @file idx.cpp * * Implementation of GiNaC's indices. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "idx.h" #include "symbol.h" #include "lst.h" #include "print.h" #include "archive.h" #include "utils.h" #include "debugmsg.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(idx, basic) GINAC_IMPLEMENT_REGISTERED_CLASS(varidx, idx) GINAC_IMPLEMENT_REGISTERED_CLASS(spinidx, varidx) ////////// // default constructor, destructor, copy constructor assignment operator and helpers ////////// idx::idx() : inherited(TINFO_idx) { debugmsg("idx default constructor", LOGLEVEL_CONSTRUCT); } varidx::varidx() : covariant(false) { debugmsg("varidx default constructor", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_varidx; } spinidx::spinidx() : dotted(false) { debugmsg("spinidx default constructor", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_spinidx; } void idx::copy(const idx & other) { inherited::copy(other); value = other.value; dim = other.dim; } void varidx::copy(const varidx & other) { inherited::copy(other); covariant = other.covariant; } void spinidx::copy(const spinidx & other) { inherited::copy(other); dotted = other.dotted; } DEFAULT_DESTROY(idx) DEFAULT_DESTROY(varidx) DEFAULT_DESTROY(spinidx) ////////// // other constructors ////////// idx::idx(const ex & v, const ex & d) : inherited(TINFO_idx), value(v), dim(d) { debugmsg("idx constructor from ex,ex", LOGLEVEL_CONSTRUCT); if (is_dim_numeric()) if (!dim.info(info_flags::posint)) throw(std::invalid_argument("dimension of space must be a positive integer")); } varidx::varidx(const ex & v, const ex & d, bool cov) : inherited(v, d), covariant(cov) { debugmsg("varidx constructor from ex,ex,bool", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_varidx; } spinidx::spinidx(const ex & v, const ex & d, bool cov, bool dot) : inherited(v, d, cov), dotted(dot) { debugmsg("spinidx constructor from ex,ex,bool,bool", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_spinidx; } ////////// // archiving ////////// idx::idx(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("idx constructor from archive_node", LOGLEVEL_CONSTRUCT); n.find_ex("value", value, sym_lst); n.find_ex("dim", dim, sym_lst); } varidx::varidx(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("varidx constructor from archive_node", LOGLEVEL_CONSTRUCT); n.find_bool("covariant", covariant); } spinidx::spinidx(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("spinidx constructor from archive_node", LOGLEVEL_CONSTRUCT); n.find_bool("dotted", dotted); } void idx::archive(archive_node &n) const { inherited::archive(n); n.add_ex("value", value); n.add_ex("dim", dim); } void varidx::archive(archive_node &n) const { inherited::archive(n); n.add_bool("covariant", covariant); } void spinidx::archive(archive_node &n) const { inherited::archive(n); n.add_bool("dotted", dotted); } DEFAULT_UNARCHIVE(idx) DEFAULT_UNARCHIVE(varidx) DEFAULT_UNARCHIVE(spinidx) ////////// // functions overriding virtual functions from base classes ////////// void idx::print(const print_context & c, unsigned level) const { debugmsg("idx print", LOGLEVEL_PRINT); if (is_of_type(c, print_tree)) { c.s << std::string(level, ' ') << class_name() << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << std::endl; unsigned delta_indent = static_cast(c).delta_indent; value.print(c, level + delta_indent); dim.print(c, level + delta_indent); } else { if (!is_of_type(c, print_latex)) c.s << "."; bool need_parens = !(is_ex_exactly_of_type(value, numeric) || is_ex_of_type(value, symbol)); if (need_parens) c.s << "("; value.print(c); if (need_parens) c.s << ")"; } } void varidx::print(const print_context & c, unsigned level) const { debugmsg("varidx print", LOGLEVEL_PRINT); if (is_of_type(c, print_tree)) { c.s << std::string(level, ' ') << class_name() << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << (covariant ? ", covariant" : ", contravariant") << std::endl; unsigned delta_indent = static_cast(c).delta_indent; value.print(c, level + delta_indent); dim.print(c, level + delta_indent); } else { if (!is_of_type(c, print_latex)) { if (covariant) c.s << "."; else c.s << "~"; } bool need_parens = !(is_ex_exactly_of_type(value, numeric) || is_ex_of_type(value, symbol)); if (need_parens) c.s << "("; value.print(c); if (need_parens) c.s << ")"; } } void spinidx::print(const print_context & c, unsigned level) const { debugmsg("spinidx print", LOGLEVEL_PRINT); if (is_of_type(c, print_tree)) { c.s << std::string(level, ' ') << class_name() << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << (covariant ? ", covariant" : ", contravariant") << (dotted ? ", dotted" : ", undotted") << std::endl; unsigned delta_indent = static_cast(c).delta_indent; value.print(c, level + delta_indent); dim.print(c, level + delta_indent); } else { bool is_tex = is_of_type(c, print_latex); if (!is_tex) { if (covariant) c.s << "."; else c.s << "~"; } if (dotted) { if (is_tex) c.s << "\\dot{"; else c.s << "*"; } bool need_parens = !(is_ex_exactly_of_type(value, numeric) || is_ex_of_type(value, symbol)); if (need_parens) c.s << "("; value.print(c); if (need_parens) c.s << ")"; if (is_tex && dotted) c.s << "}"; } } bool idx::info(unsigned inf) const { if (inf == info_flags::idx) return true; return inherited::info(inf); } unsigned idx::nops() const { // don't count the dimension as that is not really a sub-expression return 1; } ex & idx::let_op(int i) { GINAC_ASSERT(i == 0); return value; } /** Returns order relation between two indices of the same type. The order * must be such that dummy indices lie next to each other. */ int idx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, idx)); const idx &o = static_cast(other); int cmpval = value.compare(o.value); if (cmpval) return cmpval; return dim.compare(o.dim); } bool idx::match_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, idx)); const idx &o = static_cast(other); return dim.is_equal(o.dim); } int varidx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, varidx)); const varidx &o = static_cast(other); int cmpval = inherited::compare_same_type(other); if (cmpval) return cmpval; // Check variance last so dummy indices will end up next to each other if (covariant != o.covariant) return covariant ? -1 : 1; return 0; } bool varidx::match_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, varidx)); const varidx &o = static_cast(other); if (covariant != o.covariant) return false; return inherited::match_same_type(other); } int spinidx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, spinidx)); const spinidx &o = static_cast(other); // Check dottedness first so dummy indices will end up next to each other if (dotted != o.dotted) return dotted ? -1 : 1; int cmpval = inherited::compare_same_type(other); if (cmpval) return cmpval; return 0; } bool spinidx::match_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, spinidx)); const spinidx &o = static_cast(other); if (dotted != o.dotted) return false; return inherited::match_same_type(other); } /** By default, basic::evalf would evaluate the index value but we don't want * a.1 to become a.(1.0). */ ex idx::evalf(int level) const { return *this; } ex idx::subs(const lst & ls, const lst & lr, bool no_pattern) const { GINAC_ASSERT(ls.nops() == lr.nops()); // First look for index substitutions for (unsigned i=0; iindex if (is_ex_of_type(lr.op(i), idx)) return lr.op(i); // Otherwise substitute value idx *i_copy = static_cast(duplicate()); i_copy->value = lr.op(i); i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } } // None, substitute objects in value (not in dimension) const ex &subsed_value = value.subs(ls, lr, no_pattern); if (are_ex_trivially_equal(value, subsed_value)) return *this; idx *i_copy = static_cast(duplicate()); i_copy->value = subsed_value; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } /** Implementation of ex::diff() for an index always returns 0. * * @see ex::diff */ ex idx::derivative(const symbol & s) const { return _ex0(); } ////////// // new virtual functions ////////// bool idx::is_dummy_pair_same_type(const basic & other) const { const idx &o = static_cast(other); // Only pure symbols form dummy pairs, "2n+1" doesn't if (!is_ex_of_type(value, symbol)) return false; // Value must be equal, of course if (!value.is_equal(o.value)) return false; // Also the dimension return dim.is_equal(o.dim); } bool varidx::is_dummy_pair_same_type(const basic & other) const { const varidx &o = static_cast(other); // Variance must be opposite if (covariant == o.covariant) return false; return inherited::is_dummy_pair_same_type(other); } bool spinidx::is_dummy_pair_same_type(const basic & other) const { const spinidx &o = static_cast(other); // Dottedness must be the same if (dotted != o.dotted) return false; return inherited::is_dummy_pair_same_type(other); } ////////// // non-virtual functions ////////// ex varidx::toggle_variance(void) const { varidx *i_copy = static_cast(duplicate()); i_copy->covariant = !i_copy->covariant; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ex spinidx::toggle_dot(void) const { spinidx *i_copy = static_cast(duplicate()); i_copy->dotted = !i_copy->dotted; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ex spinidx::toggle_variance_dot(void) const { spinidx *i_copy = static_cast(duplicate()); i_copy->covariant = !i_copy->covariant; i_copy->dotted = !i_copy->dotted; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ////////// // global functions ////////// bool is_dummy_pair(const idx & i1, const idx & i2) { // The indices must be of exactly the same type if (i1.tinfo() != i2.tinfo()) return false; // Same type, let the indices decide whether they are paired return i1.is_dummy_pair_same_type(i2); } bool is_dummy_pair(const ex & e1, const ex & e2) { // The expressions must be indices if (!is_ex_of_type(e1, idx) || !is_ex_of_type(e2, idx)) return false; return is_dummy_pair(ex_to(e1), ex_to(e2)); } void find_free_and_dummy(exvector::const_iterator it, exvector::const_iterator itend, exvector & out_free, exvector & out_dummy) { out_free.clear(); out_dummy.clear(); // No indices? Then do nothing if (it == itend) return; // Only one index? Then it is a free one if it's not numeric if (itend - it == 1) { if (ex_to(*it).is_symbolic()) out_free.push_back(*it); return; } // Sort index vector. This will cause dummy indices come to lie next // to each other (because the sort order is defined to guarantee this). exvector v(it, itend); shaker_sort(v.begin(), v.end(), ex_is_less(), ex_swap()); // Find dummy pairs and free indices it = v.begin(); itend = v.end(); exvector::const_iterator last = it++; while (it != itend) { if (is_dummy_pair(*it, *last)) { out_dummy.push_back(*last); it++; if (it == itend) return; } else { if (!it->is_equal(*last) && ex_to(*last).is_symbolic()) out_free.push_back(*last); } last = it++; } if (ex_to(*last).is_symbolic()) out_free.push_back(*last); } } // namespace GiNaC