/** @file idx.cpp * * Implementation of GiNaC's indices. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "idx.h" #include "symbol.h" #include "lst.h" #include "archive.h" #include "utils.h" #include "debugmsg.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(idx, basic) GINAC_IMPLEMENT_REGISTERED_CLASS(varidx, idx) ////////// // default constructor, destructor, copy constructor assignment operator and helpers ////////// idx::idx() : inherited(TINFO_idx) { debugmsg("idx default constructor", LOGLEVEL_CONSTRUCT); } varidx::varidx() : covariant(false) { debugmsg("varidx default constructor", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_varidx; } void idx::copy(const idx & other) { inherited::copy(other); value = other.value; dim = other.dim; } void varidx::copy(const varidx & other) { inherited::copy(other); covariant = other.covariant; } DEFAULT_DESTROY(idx) DEFAULT_DESTROY(varidx) ////////// // other constructors ////////// idx::idx(const ex & v, const ex & d) : inherited(TINFO_idx), value(v), dim(d) { debugmsg("idx constructor from ex,ex", LOGLEVEL_CONSTRUCT); if (is_dim_numeric()) if (!dim.info(info_flags::posint)) throw(std::invalid_argument("dimension of space must be a positive integer")); } varidx::varidx(const ex & v, const ex & d, bool cov) : inherited(v, d), covariant(cov) { debugmsg("varidx constructor from ex,ex,bool", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_varidx; } ////////// // archiving ////////// idx::idx(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("idx constructor from archive_node", LOGLEVEL_CONSTRUCT); n.find_ex("value", value, sym_lst); n.find_ex("dim", dim, sym_lst); } varidx::varidx(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("varidx constructor from archive_node", LOGLEVEL_CONSTRUCT); n.find_bool("covariant", covariant); } void idx::archive(archive_node &n) const { inherited::archive(n); n.add_ex("value", value); n.add_ex("dim", dim); } void varidx::archive(archive_node &n) const { inherited::archive(n); n.add_bool("covariant", covariant); } DEFAULT_UNARCHIVE(idx) DEFAULT_UNARCHIVE(varidx) ////////// // functions overriding virtual functions from bases classes ////////// void idx::printraw(std::ostream & os) const { debugmsg("idx printraw", LOGLEVEL_PRINT); os << class_name() << "("; value.printraw(os); os << ",dim="; dim.printraw(os); os << ",hash=" << hashvalue << ",flags=" << flags; os << ")"; } void idx::printtree(std::ostream & os, unsigned indent) const { debugmsg("idx printtree",LOGLEVEL_PRINT); os << std::string(indent, ' ') << "type=" << class_name(); value.printtree(os, indent + delta_indent); os << std::string(indent, ' '); os << ", hash=" << hashvalue << " (0x" << std::hex << hashvalue << std::dec << ")" << ", flags=" << flags << std::endl; } void idx::print(std::ostream & os, unsigned upper_precedence) const { debugmsg("idx print", LOGLEVEL_PRINT); os << "."; bool need_parens = !(is_ex_exactly_of_type(value, numeric) || is_ex_of_type(value, symbol)); if (need_parens) os << "("; os << value; if (need_parens) os << ")"; } void varidx::print(std::ostream & os, unsigned upper_precedence) const { debugmsg("varidx print", LOGLEVEL_PRINT); if (covariant) os << "."; else os << "~"; bool need_parens = !(is_ex_exactly_of_type(value, numeric) || is_ex_of_type(value, symbol)); if (need_parens) os << "("; os << value; if (need_parens) os << ")"; } bool idx::info(unsigned inf) const { if (inf == info_flags::idx) return true; return inherited::info(inf); } /** Returns order relation between two indices of the same type. The order * must be such that dummy indices lie next to each other. */ int idx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, idx)); const idx &o = static_cast(other); int cmpval = value.compare(o.value); if (cmpval) return cmpval; return dim.compare(o.dim); } int varidx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, varidx)); const varidx &o = static_cast(other); int cmpval = inherited::compare_same_type(other); if (cmpval) return cmpval; // Check variance last so dummy indices will end up next to each other if (covariant != o.covariant) return covariant ? -1 : 1; return 0; } ex idx::subs(const lst & ls, const lst & lr) const { GINAC_ASSERT(ls.nops() == lr.nops()); // First look for index substitutions for (unsigned i=0; iindex if (is_ex_of_type(lr.op(i), idx)) return lr.op(i); // Otherwise substitute value idx *i_copy = static_cast(duplicate()); i_copy->value = lr.op(i); return i_copy->setflag(status_flags::dynallocated); } } // None, substitute objects in value (not in dimension) const ex &subsed_value = value.subs(ls, lr); if (are_ex_trivially_equal(value, subsed_value)) return *this; idx *i_copy = static_cast(duplicate()); i_copy->value = subsed_value; return i_copy->setflag(status_flags::dynallocated); } ////////// // new virtual functions ////////// bool idx::is_dummy_pair_same_type(const basic & other) const { const idx &o = static_cast(other); // Only pure symbols form dummy pairs, "2n+1" doesn't if (!is_ex_of_type(value, symbol)) return false; // Value must be equal, of course if (!value.is_equal(o.value)) return false; // Also the dimension return dim.is_equal(o.dim); } bool varidx::is_dummy_pair_same_type(const basic & other) const { const varidx &o = static_cast(other); // Variance must be opposite if (covariant == o.covariant) return false; return inherited::is_dummy_pair_same_type(other); } ////////// // non-virtual functions ////////// ex varidx::toggle_variance(void) const { varidx *i_copy = static_cast(duplicate()); i_copy->covariant = !i_copy->covariant; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ////////// // global functions ////////// bool is_dummy_pair(const idx & i1, const idx & i2) { // The indices must be of exactly the same type if (i1.tinfo() != i2.tinfo()) return false; // Same type, let the indices decide whether they are paired return i1.is_dummy_pair_same_type(i2); } bool is_dummy_pair(const ex & e1, const ex & e2) { // The expressions must be indices if (!is_ex_of_type(e1, idx) || !is_ex_of_type(e2, idx)) return false; return is_dummy_pair(ex_to_idx(e1), ex_to_idx(e2)); } /** Bring a vector of indices into a canonic order. Dummy indices will lie * next to each other after the sorting. */ static void sort_index_vector(exvector &v) { // Nothing to sort if less than 2 elements if (v.size() < 2) return; // Simple bubble sort algorithm should be sufficient for the small // number of indices expected exvector::iterator it1 = v.begin(), itend = v.end(), next_to_last_idx = itend - 1; while (it1 != next_to_last_idx) { exvector::iterator it2 = it1 + 1; while (it2 != itend) { if (it1->compare(*it2) > 0) it1->swap(*it2); it2++; } it1++; } } void find_free_and_dummy(exvector::const_iterator it, exvector::const_iterator itend, exvector & out_free, exvector & out_dummy) { out_free.clear(); out_dummy.clear(); // No indices? Then do nothing if (it == itend) return; // Only one index? Then it is a free one if it's not numeric if (itend - it == 1) { if (ex_to_idx(*it).is_symbolic()) out_free.push_back(*it); return; } // Sort index vector. This will cause dummy indices come to lie next // to each other (because the sort order is defined to guarantee this). exvector v(it, itend); sort_index_vector(v); // Find dummy pairs and free indices it = v.begin(); itend = v.end(); exvector::const_iterator last = it++; while (it != itend) { if (is_dummy_pair(*it, *last)) { out_dummy.push_back(*last); it++; if (it == itend) return; } else { if (!it->is_equal(*last) && ex_to_idx(*last).is_symbolic()) out_free.push_back(*last); } last = it++; } if (ex_to_idx(*last).is_symbolic()) out_free.push_back(*last); } exvector index_set_difference(const exvector & set1, const exvector & set2) { exvector ret; exvector::const_iterator ait = set1.begin(), aitend = set1.end(); while (ait != aitend) { exvector::const_iterator bit = set2.begin(), bitend = set2.end(); bool found = false; while (bit != bitend) { if (ait->is_equal(*bit)) { found = true; break; } bit++; } if (!found) ret.push_back(*ait); ait++; } return ret; } } // namespace GiNaC