/** @file idx.cpp * * Implementation of GiNaC's indices. */ /* * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "idx.h" #include "ex.h" #include "lst.h" #include "relational.h" #include "utils.h" #include "debugmsg.h" namespace GiNaC { ////////// // default constructor, destructor, copy constructor assignment operator and helpers ////////// // public idx::idx() : basic(TINFO_idx), symbolic(true), covariant(false) { debugmsg("idx default constructor",LOGLEVEL_CONSTRUCT); serial=next_serial++; name="index"+ToString(serial); } idx::~idx() { debugmsg("idx destructor",LOGLEVEL_DESTRUCT); destroy(0); } idx::idx(idx const & other) { debugmsg("idx copy constructor",LOGLEVEL_CONSTRUCT); copy(other); } idx const & idx::operator=(idx const & other) { debugmsg("idx operator=",LOGLEVEL_ASSIGNMENT); if (this != &other) { destroy(1); copy(other); } return *this; } // protected void idx::copy(idx const & other) { basic::copy(other); serial=other.serial; symbolic=other.symbolic; name=other.name; value=other.value; covariant=other.covariant; } void idx::destroy(bool call_parent) { if (call_parent) basic::destroy(call_parent); } ////////// // other constructors ////////// // public idx::idx(bool cov) : basic(TINFO_idx), symbolic(true), covariant(cov) { debugmsg("idx constructor from bool",LOGLEVEL_CONSTRUCT); serial=next_serial++; name="index"+ToString(serial); } idx::idx(string const & n, bool cov) : basic(TINFO_idx), symbolic(true), name(n), covariant(cov) { debugmsg("idx constructor from string,bool",LOGLEVEL_CONSTRUCT); serial=next_serial++; } idx::idx(char const * n, bool cov) : basic(TINFO_idx), symbolic(true), name(n), covariant(cov) { debugmsg("idx constructor from char*,bool",LOGLEVEL_CONSTRUCT); serial=next_serial++; } idx::idx(unsigned const v, bool cov) : basic(TINFO_idx), symbolic(false), value(v), covariant(cov) { debugmsg("idx constructor from unsigned,bool",LOGLEVEL_CONSTRUCT); serial=0; } ////////// // functions overriding virtual functions from bases classes ////////// // public basic * idx::duplicate() const { debugmsg("idx duplicate",LOGLEVEL_DUPLICATE); return new idx(*this); } void idx::printraw(ostream & os) const { debugmsg("idx printraw",LOGLEVEL_PRINT); os << "idx("; if (symbolic) { os << "symbolic,name=" << name; } else { os << "non symbolic,value=" << value; } if (covariant) { os << ",covariant"; } else { os << ",contravariant"; } os << ",serial=" << serial; os << ",hash=" << hashvalue << ",flags=" << flags; os << ")"; } void idx::printtree(ostream & os, unsigned indent) const { debugmsg("idx printtree",LOGLEVEL_PRINT); os << string(indent,' ') << "idx: "; if (symbolic) { os << "symbolic,name=" << name; } else { os << "non symbolic,value=" << value; } if (covariant) { os << ",covariant"; } else { os << ",contravariant"; } os << ", serial=" << serial << ", hash=" << hashvalue << " (0x" << hex << hashvalue << dec << ")" << ", flags=" << flags << endl; } void idx::print(ostream & os, unsigned upper_precedence) const { debugmsg("idx print",LOGLEVEL_PRINT); if (covariant) { os << "_"; } else { os << "~"; } if (symbolic) { os << name; } else { os << value; } } bool idx::info(unsigned inf) const { if (inf==info_flags::idx) return true; return basic::info(inf); } ex idx::subs(lst const & ls, lst const & lr) const { ASSERT(ls.nops()==lr.nops()); #ifdef DOASSERT for (int i=0; i (const_cast(other)); if (covariant!=o.covariant) { // different co/contravariant return covariant ? -1 : 1; } if ((!symbolic) && (!o.symbolic)) { // non-symbolic, of equal type: compare values if (value==o.value) { return 0; } return value (const_cast(other)); if (covariant!=o.covariant) return false; if (symbolic!=o.symbolic) return false; if (symbolic && o.symbolic) return serial==o.serial; return value==o.value; } unsigned idx::calchash(void) const { hashvalue=golden_ratio_hash(golden_ratio_hash(tinfo_key ^ serial)); setflag(status_flags::hash_calculated); return hashvalue; } ////////// // new virtual functions which can be overridden by derived classes ////////// // public bool idx::is_co_contra_pair(basic const & other) const { // like is_equal_same_type(), but tests for different covariant status ASSERT(is_of_type(other,idx)); idx const & o=static_cast (const_cast(other)); if (covariant==o.covariant) return false; if (symbolic!=o.symbolic) return false; if (symbolic && o.symbolic) return serial==o.serial; return value==o.value; } bool idx::is_symbolic(void) const { return symbolic; } unsigned idx::get_value(void) const { return value; } bool idx::is_covariant(void) const { return covariant; } ex idx::toggle_covariant(void) const { idx * i_copy=static_cast(duplicate()); i_copy->covariant = !i_copy->covariant; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ////////// // non-virtual functions in this class ////////// // none ////////// // static member variables ////////// // protected unsigned idx::next_serial=0; ////////// // global constants ////////// const idx some_idx; type_info const & typeid_idx=typeid(some_idx); ////////// // other functions ////////// int canonicalize_indices(exvector & iv, bool antisymmetric) { if (iv.size()<2) { // nothing do to for 0 or 1 indices return INT_MAX; } bool something_changed=false; int sig=1; // simple bubble sort algorithm should be sufficient for the small number of indices needed exvector::const_iterator last_idx=iv.end(); exvector::const_iterator next_to_last_idx=iv.end()-1; for (exvector::iterator it1=iv.begin(); it1!=next_to_last_idx; ++it1) { for (exvector::iterator it2=it1+1; it2!=last_idx; ++it2) { int cmpval=(*it1).compare(*it2); if (cmpval==1) { iter_swap(it1,it2); something_changed=true; if (antisymmetric) sig=-sig; } else if ((cmpval==0) && antisymmetric) { something_changed=true; sig=0; } } } return something_changed ? sig : INT_MAX; } exvector idx_intersect(exvector const & iv1, exvector const & iv2) { // build a vector of symbolic indices contained in iv1 and iv2 simultaneously // assumes (but does not test) that each index occurs at most twice exvector iv_intersect; for (exvector::const_iterator cit1=iv1.begin(); cit1!=iv1.end(); ++cit1) { ASSERT(is_ex_of_type(*cit1,idx)); if (ex_to_idx(*cit1).is_symbolic()) { for (exvector::const_iterator cit2=iv2.begin(); cit2!=iv2.end(); ++cit2) { ASSERT(is_ex_of_type(*cit2,idx)); if ((*cit1).is_equal(*cit2)) { iv_intersect.push_back(*cit1); break; } } } } return iv_intersect; } #define TEST_PERMUTATION(A,B,C,P) \ if ((iv3[B].is_equal(iv2[0]))&&(iv3[C].is_equal(iv2[1]))) { \ if (antisymmetric) *sig=P; \ return iv3[A]; \ } ex permute_free_index_to_front(exvector const & iv3, exvector const & iv2, bool antisymmetric, int * sig) { // match (return value,iv2) to iv3 by permuting indices // iv3 is always cyclic ASSERT(iv3.size()==3); ASSERT(iv2.size()==2); *sig=1; TEST_PERMUTATION(0,1,2, 1); TEST_PERMUTATION(0,2,1, -1); TEST_PERMUTATION(1,0,2, -1); TEST_PERMUTATION(1,2,0, 1); TEST_PERMUTATION(2,0,1, 1); TEST_PERMUTATION(2,1,0, -1); throw(std::logic_error("permute_free_index_to_front(): no valid permutation found")); } unsigned subs_index_in_exvector(exvector & v, ex const & is, ex const & ir) { exvector::iterator it; unsigned replacements=0; unsigned current_replacements; ASSERT(is_ex_of_type(is,idx)); ASSERT(is_ex_of_type(ir,idx)); for (it=v.begin(); it!=v.end(); ++it) { current_replacements=count_index(*it,is); if (current_replacements>0) { (*it)=(*it).subs(is==ir); } replacements += current_replacements; } return replacements; } unsigned count_index(ex const & e, ex const & i) { exvector idxv=e.get_indices(); unsigned count=0; for (exvector::const_iterator cit=idxv.begin(); cit!=idxv.end(); ++cit) { if ((*cit).is_equal(i)) count++; } return count; } ex subs_indices(ex const & e, exvector const & idxv_subs, exvector const & idxv_repl) { ASSERT(idxv_subs.size()==idxv_repl.size()); ex res=e; for (unsigned i=0; i