/** @file idx.cpp * * Implementation of GiNaC's indices. */ /* * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "idx.h" #include "symbol.h" #include "lst.h" #include "relational.h" #include "print.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(idx, basic) GINAC_IMPLEMENT_REGISTERED_CLASS(varidx, idx) GINAC_IMPLEMENT_REGISTERED_CLASS(spinidx, varidx) ////////// // default ctor, dtor, copy ctor, assignment operator and helpers ////////// idx::idx() : inherited(TINFO_idx) {} varidx::varidx() : covariant(false) { tinfo_key = TINFO_varidx; } spinidx::spinidx() : dotted(false) { tinfo_key = TINFO_spinidx; } void idx::copy(const idx & other) { inherited::copy(other); value = other.value; dim = other.dim; } void varidx::copy(const varidx & other) { inherited::copy(other); covariant = other.covariant; } void spinidx::copy(const spinidx & other) { inherited::copy(other); dotted = other.dotted; } DEFAULT_DESTROY(idx) DEFAULT_DESTROY(varidx) DEFAULT_DESTROY(spinidx) ////////// // other constructors ////////// idx::idx(const ex & v, const ex & d) : inherited(TINFO_idx), value(v), dim(d) { if (is_dim_numeric()) if (!dim.info(info_flags::posint)) throw(std::invalid_argument("dimension of space must be a positive integer")); } varidx::varidx(const ex & v, const ex & d, bool cov) : inherited(v, d), covariant(cov) { tinfo_key = TINFO_varidx; } spinidx::spinidx(const ex & v, const ex & d, bool cov, bool dot) : inherited(v, d, cov), dotted(dot) { tinfo_key = TINFO_spinidx; } ////////// // archiving ////////// idx::idx(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { n.find_ex("value", value, sym_lst); n.find_ex("dim", dim, sym_lst); } varidx::varidx(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { n.find_bool("covariant", covariant); } spinidx::spinidx(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { n.find_bool("dotted", dotted); } void idx::archive(archive_node &n) const { inherited::archive(n); n.add_ex("value", value); n.add_ex("dim", dim); } void varidx::archive(archive_node &n) const { inherited::archive(n); n.add_bool("covariant", covariant); } void spinidx::archive(archive_node &n) const { inherited::archive(n); n.add_bool("dotted", dotted); } DEFAULT_UNARCHIVE(idx) DEFAULT_UNARCHIVE(varidx) DEFAULT_UNARCHIVE(spinidx) ////////// // functions overriding virtual functions from base classes ////////// void idx::print(const print_context & c, unsigned level) const { if (is_of_type(c, print_tree)) { c.s << std::string(level, ' ') << class_name() << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << std::endl; unsigned delta_indent = static_cast(c).delta_indent; value.print(c, level + delta_indent); dim.print(c, level + delta_indent); } else { if (is_a(c)) c.s << "{"; else c.s << "."; bool need_parens = !(is_exactly_a(value) || is_a(value)); if (need_parens) c.s << "("; value.print(c); if (need_parens) c.s << ")"; if (is_a(c)) c.s << "}"; } } void varidx::print(const print_context & c, unsigned level) const { if (is_of_type(c, print_tree)) { c.s << std::string(level, ' ') << class_name() << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << (covariant ? ", covariant" : ", contravariant") << std::endl; unsigned delta_indent = static_cast(c).delta_indent; value.print(c, level + delta_indent); dim.print(c, level + delta_indent); } else { if (is_a(c)) c.s << "{"; else { if (covariant) c.s << "."; else c.s << "~"; } bool need_parens = !(is_exactly_a(value) || is_a(value)); if (need_parens) c.s << "("; value.print(c); if (need_parens) c.s << ")"; if (is_a(c)) c.s << "}"; } } void spinidx::print(const print_context & c, unsigned level) const { if (is_of_type(c, print_tree)) { c.s << std::string(level, ' ') << class_name() << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << (covariant ? ", covariant" : ", contravariant") << (dotted ? ", dotted" : ", undotted") << std::endl; unsigned delta_indent = static_cast(c).delta_indent; value.print(c, level + delta_indent); dim.print(c, level + delta_indent); } else { bool is_tex = is_of_type(c, print_latex); if (is_tex) { if (covariant) c.s << "_{"; else c.s << "^{"; } else { if (covariant) c.s << "."; else c.s << "~"; } if (dotted) { if (is_tex) c.s << "\\dot{"; else c.s << "*"; } bool need_parens = !(is_exactly_a(value) || is_a(value)); if (need_parens) c.s << "("; value.print(c); if (need_parens) c.s << ")"; if (is_tex && dotted) c.s << "}"; if (is_tex) c.s << "}"; } } bool idx::info(unsigned inf) const { if (inf == info_flags::idx) return true; return inherited::info(inf); } unsigned idx::nops() const { // don't count the dimension as that is not really a sub-expression return 1; } ex & idx::let_op(int i) { GINAC_ASSERT(i == 0); return value; } /** Returns order relation between two indices of the same type. The order * must be such that dummy indices lie next to each other. */ int idx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const idx &o = static_cast(other); int cmpval = value.compare(o.value); if (cmpval) return cmpval; return dim.compare(o.dim); } bool idx::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const idx &o = static_cast(other); return dim.is_equal(o.dim); } int varidx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const varidx &o = static_cast(other); int cmpval = inherited::compare_same_type(other); if (cmpval) return cmpval; // Check variance last so dummy indices will end up next to each other if (covariant != o.covariant) return covariant ? -1 : 1; return 0; } bool varidx::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const varidx &o = static_cast(other); if (covariant != o.covariant) return false; return inherited::match_same_type(other); } int spinidx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const spinidx &o = static_cast(other); // Check dottedness first so dummy indices will end up next to each other if (dotted != o.dotted) return dotted ? -1 : 1; int cmpval = inherited::compare_same_type(other); if (cmpval) return cmpval; return 0; } bool spinidx::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const spinidx &o = static_cast(other); if (dotted != o.dotted) return false; return inherited::match_same_type(other); } /** By default, basic::evalf would evaluate the index value but we don't want * a.1 to become a.(1.0). */ ex idx::evalf(int level) const { return *this; } ex idx::subs(const lst & ls, const lst & lr, bool no_pattern) const { GINAC_ASSERT(ls.nops() == lr.nops()); // First look for index substitutions for (unsigned i=0; i(ls.op(i)))) { // Substitution index->index if (is_a(lr.op(i))) return lr.op(i); // Otherwise substitute value idx *i_copy = static_cast(duplicate()); i_copy->value = lr.op(i); i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } } // None, substitute objects in value (not in dimension) const ex &subsed_value = value.subs(ls, lr, no_pattern); if (are_ex_trivially_equal(value, subsed_value)) return *this; idx *i_copy = static_cast(duplicate()); i_copy->value = subsed_value; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } /** Implementation of ex::diff() for an index always returns 0. * * @see ex::diff */ ex idx::derivative(const symbol & s) const { return _ex0; } ////////// // new virtual functions ////////// bool idx::is_dummy_pair_same_type(const basic & other) const { const idx &o = static_cast(other); // Only pure symbols form dummy pairs, numeric indices and expressions // like "2n+1" don't if (!is_a(value)) return false; // Value must be equal, of course if (!value.is_equal(o.value)) return false; // Dimensions need not be equal but must be comparable (so we can // determine the minimum dimension of contractions) if (dim.is_equal(o.dim)) return true; return (dim < o.dim || dim > o.dim || (is_exactly_a(dim) && is_a(o.dim)) || (is_a(dim) && is_exactly_a(o.dim))); } bool varidx::is_dummy_pair_same_type(const basic & other) const { const varidx &o = static_cast(other); // Variance must be opposite if (covariant == o.covariant) return false; return inherited::is_dummy_pair_same_type(other); } bool spinidx::is_dummy_pair_same_type(const basic & other) const { const spinidx &o = static_cast(other); // Dottedness must be the same if (dotted != o.dotted) return false; return inherited::is_dummy_pair_same_type(other); } ////////// // non-virtual functions ////////// ex idx::replace_dim(const ex & new_dim) const { idx *i_copy = static_cast(duplicate()); i_copy->dim = new_dim; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ex idx::minimal_dim(const idx & other) const { return GiNaC::minimal_dim(dim, other.dim); } ex varidx::toggle_variance(void) const { varidx *i_copy = static_cast(duplicate()); i_copy->covariant = !i_copy->covariant; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ex spinidx::toggle_dot(void) const { spinidx *i_copy = static_cast(duplicate()); i_copy->dotted = !i_copy->dotted; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ex spinidx::toggle_variance_dot(void) const { spinidx *i_copy = static_cast(duplicate()); i_copy->covariant = !i_copy->covariant; i_copy->dotted = !i_copy->dotted; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ////////// // global functions ////////// bool is_dummy_pair(const idx & i1, const idx & i2) { // The indices must be of exactly the same type if (i1.tinfo() != i2.tinfo()) return false; // Same type, let the indices decide whether they are paired return i1.is_dummy_pair_same_type(i2); } bool is_dummy_pair(const ex & e1, const ex & e2) { // The expressions must be indices if (!is_a(e1) || !is_a(e2)) return false; return is_dummy_pair(ex_to(e1), ex_to(e2)); } void find_free_and_dummy(exvector::const_iterator it, exvector::const_iterator itend, exvector & out_free, exvector & out_dummy) { out_free.clear(); out_dummy.clear(); // No indices? Then do nothing if (it == itend) return; // Only one index? Then it is a free one if it's not numeric if (itend - it == 1) { if (ex_to(*it).is_symbolic()) out_free.push_back(*it); return; } // Sort index vector. This will cause dummy indices come to lie next // to each other (because the sort order is defined to guarantee this). exvector v(it, itend); shaker_sort(v.begin(), v.end(), ex_is_less(), ex_swap()); // Find dummy pairs and free indices it = v.begin(); itend = v.end(); exvector::const_iterator last = it++; while (it != itend) { if (is_dummy_pair(*it, *last)) { out_dummy.push_back(*last); it++; if (it == itend) return; } else { if (!it->is_equal(*last) && ex_to(*last).is_symbolic()) out_free.push_back(*last); } last = it++; } if (ex_to(*last).is_symbolic()) out_free.push_back(*last); } ex minimal_dim(const ex & dim1, const ex & dim2) { if (dim1.is_equal(dim2) || dim1 < dim2 || (is_exactly_a(dim1) && is_a(dim2))) return dim1; else if (dim1 > dim2 || (is_a(dim1) && is_exactly_a(dim2))) return dim2; else { std::ostringstream s; s << "minimal_dim(): index dimensions " << dim1 << " and " << dim2 << " cannot be ordered"; throw (std::runtime_error(s.str())); } } } // namespace GiNaC