/** @file factor.cpp * * Polynomial factorization code (implementation). * * Algorithms used can be found in * [W1] An Improved Multivariate Polynomial Factoring Algorithm, * P.S.Wang, Mathematics of Computation, Vol. 32, No. 144 (1978) 1215--1231. * [GCL] Algorithms for Computer Algebra, * K.O.Geddes, S.R.Czapor, G.Labahn, Springer Verlag, 1992. */ /* * GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ //#define DEBUGFACTOR #include "factor.h" #include "ex.h" #include "numeric.h" #include "operators.h" #include "inifcns.h" #include "symbol.h" #include "relational.h" #include "power.h" #include "mul.h" #include "normal.h" #include "add.h" #include #include #include #include #include #ifdef DEBUGFACTOR #include #endif using namespace std; #include using namespace cln; namespace GiNaC { #ifdef DEBUGFACTOR #define DCOUT(str) cout << #str << endl #define DCOUTVAR(var) cout << #var << ": " << var << endl #define DCOUT2(str,var) cout << #str << ": " << var << endl #else #define DCOUT(str) #define DCOUTVAR(var) #define DCOUT2(str,var) #endif // anonymous namespace to hide all utility functions namespace { typedef vector mvec; #ifdef DEBUGFACTOR ostream& operator<<(ostream& o, const vector& v) { vector::const_iterator i = v.begin(), end = v.end(); while ( i != end ) { o << *i++ << " "; } return o; } ostream& operator<<(ostream& o, const vector& v) { vector::const_iterator i = v.begin(), end = v.end(); while ( i != end ) { o << *i << "[" << i-v.begin() << "]" << " "; ++i; } return o; } ostream& operator<<(ostream& o, const vector& v) { vector::const_iterator i = v.begin(), end = v.end(); while ( i != end ) { o << *i << "[" << i-v.begin() << "]" << " "; ++i; } return o; } ostream& operator<<(ostream& o, const vector< vector >& v) { vector< vector >::const_iterator i = v.begin(), end = v.end(); while ( i != end ) { o << i-v.begin() << ": " << *i << endl; ++i; } return o; } #endif //////////////////////////////////////////////////////////////////////////////// // modular univariate polynomial code typedef std::vector umodpoly; typedef std::vector upoly; typedef vector upvec; // COPY FROM UPOLY.HPP // CHANGED size_t -> int !!! template static int degree(const T& p) { return p.size() - 1; } template static typename T::value_type lcoeff(const T& p) { return p[p.size() - 1]; } static bool normalize_in_field(umodpoly& a) { if (a.size() == 0) return true; if ( lcoeff(a) == a[0].ring()->one() ) { return true; } const cln::cl_MI lc_1 = recip(lcoeff(a)); for (std::size_t k = a.size(); k-- != 0; ) a[k] = a[k]*lc_1; return false; } template static void canonicalize(T& p, const typename T::size_type hint = std::numeric_limits::max()) { if (p.empty()) return; std::size_t i = p.size() - 1; // Be fast if the polynomial is already canonicalized if (!zerop(p[i])) return; if (hint < p.size()) i = hint; bool is_zero = false; do { if (!zerop(p[i])) { ++i; break; } if (i == 0) { is_zero = true; break; } --i; } while (true); if (is_zero) { p.clear(); return; } p.erase(p.begin() + i, p.end()); } // END COPY FROM UPOLY.HPP static void expt_pos(umodpoly& a, unsigned int q) { if ( a.empty() ) return; cl_MI zero = a[0].ring()->zero(); int deg = degree(a); a.resize(degree(a)*q+1, zero); for ( int i=deg; i>0; --i ) { a[i*q] = a[i]; a[i] = zero; } } template static T operator+(const T& a, const T& b) { int sa = a.size(); int sb = b.size(); if ( sa >= sb ) { T r(sa); int i = 0; for ( ; i static T operator-(const T& a, const T& b) { int sa = a.size(); int sb = b.size(); if ( sa >= sb ) { T r(sa); int i = 0; for ( ; i degree(a) || (i-j) > degree(b) ) continue; c[i] = c[i] + a[j] * b[i-j]; } } canonicalize(c); return c; } static umodpoly operator*(const umodpoly& a, const umodpoly& b) { umodpoly c; if ( a.empty() || b.empty() ) return c; int n = degree(a) + degree(b); c.resize(n+1, a[0].ring()->zero()); for ( int i=0 ; i<=n; ++i ) { for ( int j=0 ; j<=i; ++j ) { if ( j > degree(a) || (i-j) > degree(b) ) continue; c[i] = c[i] + a[j] * b[i-j]; } } canonicalize(c); return c; } static upoly operator*(const upoly& a, const cl_I& x) { if ( zerop(x) ) { upoly r; return r; } upoly r(a.size()); for ( size_t i=0; i=ldeg; --deg ) { up[deg] = the(ex_to(e.coeff(x, deg)).to_cl_N()); } for ( ; deg>=0; --deg ) { up[deg] = 0; } canonicalize(up); } static void umodpoly_from_upoly(umodpoly& ump, const upoly& e, const cl_modint_ring& R) { int deg = degree(e); ump.resize(deg+1); for ( ; deg>=0; --deg ) { ump[deg] = R->canonhom(e[deg]); } canonicalize(ump); } static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_modint_ring& R) { // assert: e is in Z[x] int deg = e.degree(x); ump.resize(deg+1); int ldeg = e.ldegree(x); for ( ; deg>=ldeg; --deg ) { cl_I coeff = the(ex_to(e.coeff(x, deg)).to_cl_N()); ump[deg] = R->canonhom(coeff); } for ( ; deg>=0; --deg ) { ump[deg] = R->zero(); } canonicalize(ump); } static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_I& modulus) { umodpoly_from_ex(ump, e, x, find_modint_ring(modulus)); } static ex upoly_to_ex(const upoly& a, const ex& x) { if ( a.empty() ) return 0; ex e; for ( int i=degree(a); i>=0; --i ) { e += numeric(a[i]) * pow(x, i); } return e; } static ex umodpoly_to_ex(const umodpoly& a, const ex& x) { if ( a.empty() ) return 0; cl_modint_ring R = a[0].ring(); cl_I mod = R->modulus; cl_I halfmod = (mod-1) >> 1; ex e; for ( int i=degree(a); i>=0; --i ) { cl_I n = R->retract(a[i]); if ( n > halfmod ) { e += numeric(n-mod) * pow(x, i); } else { e += numeric(n) * pow(x, i); } } return e; } static upoly umodpoly_to_upoly(const umodpoly& a) { upoly e(a.size()); if ( a.empty() ) return e; cl_modint_ring R = a[0].ring(); cl_I mod = R->modulus; cl_I halfmod = (mod-1) >> 1; for ( int i=degree(a); i>=0; --i ) { cl_I n = R->retract(a[i]); if ( n > halfmod ) { e[i] = n-mod; } else { e[i] = n; } } return e; } static umodpoly umodpoly_to_umodpoly(const umodpoly& a, const cl_modint_ring& R, unsigned int m) { umodpoly e; if ( a.empty() ) return e; cl_modint_ring oldR = a[0].ring(); size_t sa = a.size(); e.resize(sa+m, R->zero()); for ( size_t i=0; icanonhom(oldR->retract(a[i])); } canonicalize(e); return e; } /** Divides all coefficients of the polynomial a by the integer x. * All coefficients are supposed to be divisible by x. If they are not, the * the cast will raise an exception. * * @param[in,out] a polynomial of which the coefficients will be reduced by x * @param[in] x integer that divides the coefficients */ static void reduce_coeff(umodpoly& a, const cl_I& x) { if ( a.empty() ) return; cl_modint_ring R = a[0].ring(); umodpoly::iterator i = a.begin(), end = a.end(); for ( ; i!=end; ++i ) { // cln cannot perform this division in the modular field cl_I c = R->retract(*i); *i = cl_MI(R, the(c / x)); } } /** Calculates remainder of a/b. * Assertion: a and b not empty. * * @param[in] a polynomial dividend * @param[in] b polynomial divisor * @param[out] r polynomial remainder */ static void rem(const umodpoly& a, const umodpoly& b, umodpoly& r) { int k, n; n = degree(b); k = degree(a) - n; r = a; if ( k < 0 ) return; do { cl_MI qk = div(r[n+k], b[n]); if ( !zerop(qk) ) { for ( int i=0; izero()); canonicalize(r); } /** Calculates quotient of a/b. * Assertion: a and b not empty. * * @param[in] a polynomial dividend * @param[in] b polynomial divisor * @param[out] q polynomial quotient */ static void div(const umodpoly& a, const umodpoly& b, umodpoly& q) { int k, n; n = degree(b); k = degree(a) - n; q.clear(); if ( k < 0 ) return; umodpoly r = a; q.resize(k+1, a[0].ring()->zero()); do { cl_MI qk = div(r[n+k], b[n]); if ( !zerop(qk) ) { q[k] = qk; for ( int i=0; izero()); do { cl_MI qk = div(r[n+k], b[n]); if ( !zerop(qk) ) { q[k] = qk; for ( int i=0; izero()); canonicalize(r); canonicalize(q); } /** Calculates the GCD of polynomial a and b. * * @param[in] a polynomial * @param[in] b polynomial * @param[out] c GCD */ static void gcd(const umodpoly& a, const umodpoly& b, umodpoly& c) { if ( degree(a) < degree(b) ) return gcd(b, a, c); c = a; normalize_in_field(c); umodpoly d = b; normalize_in_field(d); umodpoly r; while ( !d.empty() ) { rem(c, d, r); c = d; d = r; } normalize_in_field(c); } /** Calculates the derivative of the polynomial a. * * @param[in] a polynomial of which to take the derivative * @param[out] d result/derivative */ static void deriv(const umodpoly& a, umodpoly& d) { d.clear(); if ( a.size() <= 1 ) return; d.insert(d.begin(), a.begin()+1, a.end()); int max = d.size(); for ( int i=1; ione() ); } static bool equal_one(const umodpoly& a) { return ( a.size() == 1 && a[0] == a[0].ring()->one() ); } /** Returns true if polynomial a is square free. * * @param[in] a polynomial to check * @return true if polynomial is square free, false otherwise */ static bool squarefree(const umodpoly& a) { umodpoly b; deriv(a, b); if ( b.empty() ) { return false; } umodpoly c; gcd(a, b, c); return equal_one(c); } // END modular univariate polynomial code //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // modular matrix class modular_matrix { friend ostream& operator<<(ostream& o, const modular_matrix& m); public: modular_matrix(size_t r_, size_t c_, const cl_MI& init) : r(r_), c(c_) { m.resize(c*r, init); } size_t rowsize() const { return r; } size_t colsize() const { return c; } cl_MI& operator()(size_t row, size_t col) { return m[row*c + col]; } cl_MI operator()(size_t row, size_t col) const { return m[row*c + col]; } void mul_col(size_t col, const cl_MI x) { mvec::iterator i = m.begin() + col; for ( size_t rc=0; rc::iterator i = m.begin() + row*c; for ( size_t cc=0; cc::iterator i1 = m.begin() + row1*c; vector::iterator i2 = m.begin() + row2*c; for ( size_t cc=0; cc::iterator i1 = m.begin() + row1*c; vector::iterator i2 = m.begin() + row2*c; for ( size_t cc=0; cc& newrow) { mvec::iterator i1 = m.begin() + row*c; mvec::const_iterator i2 = newrow.begin(), end = newrow.end(); for ( ; i2 != end; ++i1, ++i2 ) { *i1 = *i2; } } mvec::const_iterator row_begin(size_t row) const { return m.begin()+row*c; } mvec::const_iterator row_end(size_t row) const { return m.begin()+row*c+r; } private: size_t r, c; mvec m; }; #ifdef DEBUGFACTOR modular_matrix operator*(const modular_matrix& m1, const modular_matrix& m2) { const unsigned int r = m1.rowsize(); const unsigned int c = m2.colsize(); modular_matrix o(r,c,m1(0,0)); for ( size_t i=0; iretract(m(i,j)) << ","; } o << R->retract(m(i,m.colsize()-1)) << "}"; if ( i != m.rowsize()-1 ) { o << ","; } } o << "}"; return o; } #endif // def DEBUGFACTOR // END modular matrix //////////////////////////////////////////////////////////////////////////////// static void q_matrix(const umodpoly& a_, modular_matrix& Q) { umodpoly a = a_; normalize_in_field(a); int n = degree(a); unsigned int q = cl_I_to_uint(a[0].ring()->modulus); umodpoly r(n, a[0].ring()->zero()); r[0] = a[0].ring()->one(); Q.set_row(0, r); unsigned int max = (n-1) * q; for ( size_t m=1; m<=max; ++m ) { cl_MI rn_1 = r.back(); for ( size_t i=n-1; i>0; --i ) { r[i] = r[i-1] - (rn_1 * a[i]); } r[0] = -rn_1 * a[0]; if ( (m % q) == 0 ) { Q.set_row(m/q, r); } } } static void nullspace(modular_matrix& M, vector& basis) { const size_t n = M.rowsize(); const cl_MI one = M(0,0).ring()->one(); for ( size_t i=0; i r ) { M.switch_col(cc, r); } break; } } if ( cc < n ) { M.mul_col(r, recip(M(r,r))); for ( cc=0; ccone()); modular_matrix Q(degree(a), degree(a), R->zero()); q_matrix(a, Q); vector nu; nullspace(Q, nu); const unsigned int k = nu.size(); if ( k == 1 ) { return; } list factors; factors.push_back(a); unsigned int size = 1; unsigned int r = 1; unsigned int q = cl_I_to_uint(R->modulus); list::iterator u = factors.begin(); while ( true ) { for ( unsigned int s=0; s::const_iterator i = factors.begin(), end = factors.end(); while ( i != end ) { if ( degree(*i) ) ++size; ++i; } if ( size == k ) { list::const_iterator i = factors.begin(), end = factors.end(); while ( i != end ) { upv.push_back(*i++); } return; } } } if ( ++r == k ) { r = 1; ++u; } } } static void expt_1_over_p(const umodpoly& a, unsigned int prime, umodpoly& ap) { size_t newdeg = degree(a)/prime; ap.resize(newdeg+1); ap[0] = a[0]; for ( size_t i=1; i<=newdeg; ++i ) { ap[i] = a[i*prime]; } } static void modsqrfree(const umodpoly& a, upvec& factors, vector& mult) { const unsigned int prime = cl_I_to_uint(a[0].ring()->modulus); int i = 1; umodpoly b; deriv(a, b); if ( b.size() ) { umodpoly c; gcd(a, b, c); umodpoly w; div(a, c, w); while ( unequal_one(w) ) { umodpoly y; gcd(w, c, y); umodpoly z; div(w, y, z); factors.push_back(z); mult.push_back(i); ++i; w = y; umodpoly buf; div(c, y, buf); c = buf; } if ( unequal_one(c) ) { umodpoly cp; expt_1_over_p(c, prime, cp); size_t previ = mult.size(); modsqrfree(cp, factors, mult); for ( size_t i=previ; i& degrees, upvec& ddfactors) { umodpoly a = a_; cl_modint_ring R = a[0].ring(); int q = cl_I_to_int(R->modulus); int nhalf = degree(a)/2; int i = 1; umodpoly w(2); w[0] = R->zero(); w[1] = R->one(); umodpoly x = w; while ( i <= nhalf ) { expt_pos(w, q); umodpoly buf; rem(w, a, buf); w = buf; umodpoly wx = w - x; gcd(a, wx, buf); if ( unequal_one(buf) ) { degrees.push_back(i); ddfactors.push_back(buf); } if ( unequal_one(buf) ) { umodpoly buf2; div(a, buf, buf2); a = buf2; nhalf = degree(a)/2; rem(w, a, buf); w = buf; } ++i; } if ( unequal_one(a) ) { degrees.push_back(degree(a)); ddfactors.push_back(a); } } static void same_degree_factor(const umodpoly& a, upvec& upv) { cl_modint_ring R = a[0].ring(); vector degrees; upvec ddfactors; distinct_degree_factor(a, degrees, ddfactors); for ( size_t i=0; ione()); umodpoly c = a; normalize_in_field(c); umodpoly d = b; normalize_in_field(d); s = one; t.clear(); umodpoly d1; umodpoly d2 = one; umodpoly q; while ( true ) { div(c, d, q); umodpoly r = c - q * d; umodpoly r1 = s - q * d1; umodpoly r2 = t - q * d2; c = d; s = d1; t = d2; if ( r.empty() ) break; d = r; d1 = r1; d2 = r2; } cl_MI fac = recip(lcoeff(a) * lcoeff(c)); umodpoly::iterator i = s.begin(), end = s.end(); for ( ; i!=end; ++i ) { *i = *i * fac; } canonicalize(s); fac = recip(lcoeff(b) * lcoeff(c)); i = t.begin(), end = t.end(); for ( ; i!=end; ++i ) { *i = *i * fac; } canonicalize(t); } static upoly replace_lc(const upoly& poly, const cl_I& lc) { if ( poly.empty() ) return poly; upoly r = poly; r.back() = lc; return r; } static inline cl_I calc_bound(const ex& a, const ex& x, int maxdeg) { cl_I maxcoeff = 0; cl_R coeff = 0; for ( int i=a.degree(x); i>=a.ldegree(x); --i ) { cl_I aa = abs(the(ex_to(a.coeff(x, i)).to_cl_N())); if ( aa > maxcoeff ) maxcoeff = aa; coeff = coeff + square(aa); } cl_I coeffnorm = ceiling1(the(cln::sqrt(coeff))); cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg)); return ( B > maxcoeff ) ? B : maxcoeff; } static inline cl_I calc_bound(const upoly& a, int maxdeg) { cl_I maxcoeff = 0; cl_R coeff = 0; for ( int i=degree(a); i>=0; --i ) { cl_I aa = abs(a[i]); if ( aa > maxcoeff ) maxcoeff = aa; coeff = coeff + square(aa); } cl_I coeffnorm = ceiling1(the(cln::sqrt(coeff))); cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg)); return ( B > maxcoeff ) ? B : maxcoeff; } static void hensel_univar(const upoly& a_, unsigned int p, const umodpoly& u1_, const umodpoly& w1_, upoly& u, upoly& w) { upoly a = a_; const cl_modint_ring& R = u1_[0].ring(); // calc bound B int maxdeg = (degree(u1_) > degree(w1_)) ? degree(u1_) : degree(w1_); cl_I maxmodulus = 2*calc_bound(a, maxdeg); // step 1 cl_I alpha = lcoeff(a); a = a * alpha; umodpoly nu1 = u1_; normalize_in_field(nu1); umodpoly nw1 = w1_; normalize_in_field(nw1); upoly phi; phi = umodpoly_to_upoly(nu1) * alpha; umodpoly u1; umodpoly_from_upoly(u1, phi, R); phi = umodpoly_to_upoly(nw1) * alpha; umodpoly w1; umodpoly_from_upoly(w1, phi, R); // step 2 umodpoly s; umodpoly t; exteuclid(u1, w1, s, t); // step 3 u = replace_lc(umodpoly_to_upoly(u1), alpha); w = replace_lc(umodpoly_to_upoly(w1), alpha); upoly e = a - u * w; cl_I modulus = p; // step 4 while ( !e.empty() && modulus < maxmodulus ) { upoly c = e / modulus; phi = umodpoly_to_upoly(s) * c; umodpoly sigmatilde; umodpoly_from_upoly(sigmatilde, phi, R); phi = umodpoly_to_upoly(t) * c; umodpoly tautilde; umodpoly_from_upoly(tautilde, phi, R); umodpoly r, q; remdiv(sigmatilde, w1, r, q); umodpoly sigma = r; phi = umodpoly_to_upoly(tautilde) + umodpoly_to_upoly(q) * umodpoly_to_upoly(u1); umodpoly tau; umodpoly_from_upoly(tau, phi, R); u = u + umodpoly_to_upoly(tau) * modulus; w = w + umodpoly_to_upoly(sigma) * modulus; e = a - u * w; modulus = modulus * p; } // step 5 if ( e.empty() ) { cl_I g = u[0]; for ( size_t i=1; i primes; if ( primes.size() == 0 ) { primes.push_back(3); primes.push_back(5); primes.push_back(7); } vector::const_iterator it = primes.begin(); if ( p >= primes.back() ) { unsigned int candidate = primes.back() + 2; while ( true ) { size_t n = primes.size()/2; for ( size_t i=0; i p ) break; } return candidate; } vector::const_iterator end = primes.end(); for ( ; it!=end; ++it ) { if ( *it > p ) { return *it; } } throw logic_error("next_prime: should not reach this point!"); } class factor_partition { public: factor_partition(const upvec& factors_) : factors(factors_) { n = factors.size(); k.resize(n, 0); k[0] = 1; cache.resize(n-1); one.resize(1, factors.front()[0].ring()->one()); len = 1; last = 0; split(); } int operator[](size_t i) const { return k[i]; } size_t size() const { return n; } size_t size_left() const { return n-len; } size_t size_right() const { return len; } #ifdef DEBUGFACTOR void get() const { DCOUTVAR(k); } #endif bool next() { if ( last == n-1 ) { int rem = len - 1; int p = last - 1; while ( rem ) { if ( k[p] ) { --rem; --p; continue; } last = p - 1; while ( k[last] == 0 ) { --last; } if ( last == 0 && n == 2*len ) return false; k[last++] = 0; for ( size_t i=0; i<=len-rem; ++i ) { k[last] = 1; ++last; } fill(k.begin()+last, k.end(), 0); --last; split(); return true; } last = len; ++len; if ( len > n/2 ) return false; fill(k.begin(), k.begin()+len, 1); fill(k.begin()+len+1, k.end(), 0); } else { k[last++] = 0; k[last] = 1; } split(); return true; } umodpoly& left() { return lr[0]; } umodpoly& right() { return lr[1]; } private: void split_cached() { size_t i = 0; do { size_t pos = i; int group = k[i++]; size_t d = 0; while ( i < n && k[i] == group ) { ++d; ++i; } if ( d ) { if ( cache[pos].size() >= d ) { lr[group] = lr[group] * cache[pos][d-1]; } else { if ( cache[pos].size() == 0 ) { cache[pos].push_back(factors[pos] * factors[pos+1]); } size_t j = pos + cache[pos].size() + 1; d -= cache[pos].size(); while ( d ) { umodpoly buf = cache[pos].back() * factors[j]; cache[pos].push_back(buf); --d; ++j; } lr[group] = lr[group] * cache[pos].back(); } } else { lr[group] = lr[group] * factors[pos]; } } while ( i < n ); } void split() { lr[0] = one; lr[1] = one; if ( n > 6 ) { split_cached(); } else { for ( size_t i=0; i > cache; upvec factors; umodpoly one; size_t n; size_t len; size_t last; vector k; }; struct ModFactors { upoly poly; upvec factors; }; static ex factor_univariate(const ex& poly, const ex& x) { ex unit, cont, prim_ex; poly.unitcontprim(x, unit, cont, prim_ex); upoly prim; upoly_from_ex(prim, prim_ex, x); // determine proper prime and minimize number of modular factors unsigned int p = 3, lastp = 3; cl_modint_ring R; unsigned int trials = 0; unsigned int minfactors = 0; cl_I lc = lcoeff(prim); upvec factors; while ( trials < 2 ) { umodpoly modpoly; while ( true ) { p = next_prime(p); if ( !zerop(rem(lc, p)) ) { R = find_modint_ring(p); umodpoly_from_upoly(modpoly, prim, R); if ( squarefree(modpoly) ) break; } } // do modular factorization upvec trialfactors; factor_modular(modpoly, trialfactors); if ( trialfactors.size() <= 1 ) { // irreducible for sure return poly; } if ( minfactors == 0 || trialfactors.size() < minfactors ) { factors = trialfactors; minfactors = trialfactors.size(); lastp = p; trials = 1; } else { ++trials; } } p = lastp; R = find_modint_ring(p); // lift all factor combinations stack tocheck; ModFactors mf; mf.poly = prim; mf.factors = factors; tocheck.push(mf); upoly f1, f2; ex result = 1; while ( tocheck.size() ) { const size_t n = tocheck.top().factors.size(); factor_partition part(tocheck.top().factors); while ( true ) { hensel_univar(tocheck.top().poly, p, part.left(), part.right(), f1, f2); if ( !f1.empty() ) { if ( part.size_left() == 1 ) { if ( part.size_right() == 1 ) { result *= upoly_to_ex(f1, x) * upoly_to_ex(f2, x); tocheck.pop(); break; } result *= upoly_to_ex(f1, x); tocheck.top().poly = f2; for ( size_t i=0; i multivar_diophant(const vector& a_, const ex& x, const ex& c, const vector& I, unsigned int d, unsigned int p, unsigned int k); upvec multiterm_eea_lift(const upvec& a, const ex& x, unsigned int p, unsigned int k) { const size_t r = a.size(); cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k)); upvec q(r-1); q[r-2] = a[r-1]; for ( size_t j=r-2; j>=1; --j ) { q[j-1] = a[j] * q[j]; } umodpoly beta(1, R->one()); upvec s; for ( size_t j=1; j mdarg(2); mdarg[0] = umodpoly_to_ex(q[j-1], x); mdarg[1] = umodpoly_to_ex(a[j-1], x); vector empty; vector exsigma = multivar_diophant(mdarg, x, umodpoly_to_ex(beta, x), empty, 0, p, k); umodpoly sigma1; umodpoly_from_ex(sigma1, exsigma[0], x, R); umodpoly sigma2; umodpoly_from_ex(sigma2, exsigma[1], x, R); beta = sigma1; s.push_back(sigma2); } s.push_back(beta); return s; } /** * Assert: a not empty. */ void change_modulus(const cl_modint_ring& R, umodpoly& a) { if ( a.empty() ) return; cl_modint_ring oldR = a[0].ring(); umodpoly::iterator i = a.begin(), end = a.end(); for ( ; i!=end; ++i ) { *i = R->canonhom(oldR->retract(*i)); } canonicalize(a); } void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned int p, unsigned int k, umodpoly& s_, umodpoly& t_) { cl_modint_ring R = find_modint_ring(p); umodpoly amod = a; change_modulus(R, amod); umodpoly bmod = b; change_modulus(R, bmod); umodpoly smod; umodpoly tmod; exteuclid(amod, bmod, smod, tmod); cl_modint_ring Rpk = find_modint_ring(expt_pos(cl_I(p),k)); umodpoly s = smod; change_modulus(Rpk, s); umodpoly t = tmod; change_modulus(Rpk, t); cl_I modulus(p); umodpoly one(1, Rpk->one()); for ( size_t j=1; j 2 ) { upvec s = multiterm_eea_lift(a, x, p, k); for ( size_t j=0; j(e) || is_a(e) ) { return e.map(*this); } else if ( is_a(e) ) { numeric mod(R->modulus); numeric halfmod = (mod-1)/2; cl_MI emod = R->canonhom(the(ex_to(e).to_cl_N())); numeric n(R->retract(emod)); if ( n > halfmod ) { return n-mod; } else { return n; } } return e; } }; static ex make_modular(const ex& e, const cl_modint_ring& R) { make_modular_map map(R); return map(e.expand()); } vector multivar_diophant(const vector& a_, const ex& x, const ex& c, const vector& I, unsigned int d, unsigned int p, unsigned int k) { vector a = a_; const cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k)); const size_t r = a.size(); const size_t nu = I.size() + 1; vector sigma; if ( nu > 1 ) { ex xnu = I.back().x; int alphanu = I.back().evalpoint; ex A = 1; for ( size_t i=0; i b(r); for ( size_t i=0; i anew = a; for ( size_t i=0; i Inew = I; Inew.pop_back(); sigma = multivar_diophant(anew, x, cnew, Inew, d, p, k); ex buf = c; for ( size_t i=0; i(xnu), m).subs(xnu==alphanu) / factorial(m); cm = make_modular(cm, R); if ( !cm.is_zero() ) { vector delta_s = multivar_diophant(anew, x, cm, Inew, d, p, k); ex buf = e; for ( size_t j=0; j(c) ) { nterms = c.nops(); z = c.op(0); } else { nterms = 1; z = c; } for ( size_t i=0; i(ex_to(z.lcoeff(x)).to_cl_N()); upvec delta_s = univar_diophant(amod, x, m, p, k); cl_MI modcm; cl_I poscm = cm; while ( poscm < 0 ) { poscm = poscm + expt_pos(cl_I(p),k); } modcm = cl_MI(R, poscm); for ( size_t j=0; j 1 ) { z = c.op(i+1); } } } for ( size_t i=0; i& v) { for ( size_t i=0; i& I, unsigned int p, const cl_I& l, const upvec& u, const vector& lcU) { const size_t nu = I.size() + 1; const cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),l)); vector A(nu); A[nu-1] = a; for ( size_t j=nu; j>=2; --j ) { ex x = I[j-2].x; int alpha = I[j-2].evalpoint; A[j-2] = A[j-1].subs(x==alpha); A[j-2] = make_modular(A[j-2], R); } int maxdeg = a.degree(I.front().x); for ( size_t i=1; i maxdeg ) maxdeg = maxdeg2; } const size_t n = u.size(); vector U(n); for ( size_t i=0; i U1 = U; ex monomial = 1; for ( size_t m=0; m newI; for ( size_t i=1; i<=j-2; ++i ) { newI.push_back(I[i-1]); } ex xj = I[j-2].x; int alphaj = I[j-2].evalpoint; size_t deg = A[j-1].degree(xj); for ( size_t k=1; k<=deg; ++k ) { if ( !e.is_zero() ) { monomial *= (xj - alphaj); monomial = expand(monomial); ex dif = e.diff(ex_to(xj), k); ex c = dif.subs(xj==alphaj) / factorial(k); if ( !c.is_zero() ) { vector deltaU = multivar_diophant(U1, x, c, newI, maxdeg, p, cl_I_to_uint(l)); for ( size_t i=0; i(e) ) { result.append(e); return result; } if ( is_a(e) ) { result.append(1); result.append(e.op(0)); result.append(e.op(1)); return result; } if ( is_a(e) || is_a(e) ) { result.append(1); result.append(e); result.append(1); return result; } if ( is_a(e) ) { ex nfac = 1; for ( size_t i=0; i(op) ) { nfac = op; } if ( is_a(op) ) { result.append(op.op(0)); result.append(op.op(1)); } if ( is_a(op) || is_a(op) ) { result.append(op); result.append(1); } } result.prepend(nfac); return result; } throw runtime_error("put_factors_into_lst: bad term."); } #ifdef DEBUGFACTOR ostream& operator<<(ostream& o, const vector& v) { for ( size_t i=0; i& d) { const int k = f.nops()-2; numeric q, r; d[0] = ex_to(f.op(0) * f.op(f.nops()-1)); if ( d[0] == 1 && k == 1 && abs(f.op(1)) != 1 ) { return false; } for ( int i=1; i<=k; ++i ) { q = ex_to(abs(f.op(i))); for ( int j=i-1; j>=0; --j ) { r = d[j]; do { r = gcd(r, q); q = q/r; } while ( r != 1 ); if ( q == 1 ) { return true; } } d[i] = q; } return false; } static bool generate_set(const ex& u, const ex& vn, const exset& syms, const ex& f, const numeric& modulus, vector& a, vector& d) { // computation of d is actually not necessary const ex& x = *syms.begin(); bool trying = true; do { ex u0 = u; ex vna = vn; ex vnatry; exset::const_iterator s = syms.begin(); ++s; for ( size_t i=0; i(x))) != 1 ) { continue; } if ( is_a(vn) ) { trying = false; } else { lst fnum; lst::const_iterator i = ex_to(f).begin(); fnum.append(*i++); bool problem = false; while ( i!=ex_to(f).end() ) { ex fs = *i; if ( !is_a(fs) ) { s = syms.begin(); ++s; for ( size_t j=0; j=p.ldegree(x); --i ) { cont = gcd(cont, p.coeff(x,ex_to(i).to_int())); if ( cont == 1 ) break; } ex pp = expand(normal(p / cont)); if ( !is_a(cont) ) { return factor(cont) * factor(pp); } /* factor leading coefficient */ pp = pp.collect(x); ex vn = pp.lcoeff(x); pp = pp.expand(); ex vnlst; if ( is_a(vn) ) { vnlst = lst(vn); } else { ex vnfactors = factor(vn); vnlst = put_factors_into_lst(vnfactors); } const numeric maxtrials = 3; numeric modulus = (vnlst.nops()-1 > 3) ? vnlst.nops()-1 : 3; numeric minimalr = -1; vector a(syms.size()-1, 0); vector d((vnlst.nops()-1)/2+1, 0); while ( true ) { numeric trialcount = 0; ex u, delta; unsigned int prime = 3; size_t factor_count = 0; ex ufac; ex ufaclst; while ( trialcount < maxtrials ) { bool problem = generate_set(pp, vn, syms, vnlst, modulus, a, d); if ( problem ) { ++modulus; continue; } u = pp; s = syms.begin(); ++s; for ( size_t i=0; i(u.lcoeff(x)), prime) != 0 ) { umodpoly modpoly; umodpoly_from_ex(modpoly, u, x, R); if ( squarefree(modpoly) ) break; } prime = next_prime(prime); R = find_modint_ring(prime); } ufac = factor(u); ufaclst = put_factors_into_lst(ufac); factor_count = (ufaclst.nops()-1)/2; // veto factorization for which gcd(u_i, u_j) != 1 for all i,j upvec tryu; for ( size_t i=0; i<(ufaclst.nops()-1)/2; ++i ) { umodpoly newu; umodpoly_from_ex(newu, ufaclst.op(i*2+1), x, R); tryu.push_back(newu); } bool veto = false; for ( size_t i=0; i factor_count ) { minimalr = factor_count; trialcount = 0; } if ( minimalr <= 1 ) { return poly; } } vector ftilde((vnlst.nops()-1)/2+1); ftilde[0] = ex_to(vnlst.op(0)); for ( size_t i=1; i(ft); } vector used_flag((vnlst.nops()-1)/2+1, false); vector D(factor_count, 1); for ( size_t i=0; i<=factor_count; ++i ) { numeric prefac; if ( i == 0 ) { prefac = ex_to(ufaclst.op(0)); ftilde[0] = ftilde[0] / prefac; vnlst.let_op(0) = vnlst.op(0) / prefac; continue; } else { prefac = ex_to(ufaclst.op(2*(i-1)+1).lcoeff(x)); } for ( size_t j=(vnlst.nops()-1)/2+1; j>0; --j ) { if ( abs(ftilde[j-1]) == 1 ) { used_flag[j-1] = true; continue; } numeric g = gcd(prefac, ftilde[j-1]); if ( g != 1 ) { prefac = prefac / g; numeric count = abs(iquo(g, ftilde[j-1])); used_flag[j-1] = true; if ( i > 0 ) { if ( j == 1 ) { D[i-1] = D[i-1] * pow(vnlst.op(0), count); } else { D[i-1] = D[i-1] * pow(vnlst.op(2*(j-2)+1), count); } } else { ftilde[j-1] = ftilde[j-1] / prefac; break; } ++j; } } } bool some_factor_unused = false; for ( size_t i=0; i C(factor_count); if ( delta == 1 ) { for ( size_t i=0; i epv; s = syms.begin(); ++s; for ( size_t i=0; i maxdeg ) { maxdeg = ufaclst[2*i+1].degree(x); } } cl_I B = 2*calc_bound(u, x, maxdeg); cl_I l = 1; cl_I pl = prime; while ( pl < B ) { l = l + 1; pl = pl * prime; } upvec uvec; cl_modint_ring R = find_modint_ring(expt_pos(cl_I(prime),l)); for ( size_t i=0; i<(ufaclst.nops()-1)/2; ++i ) { umodpoly newu; umodpoly_from_ex(newu, ufaclst.op(i*2+1), x, R); uvec.push_back(newu); } ex res = hensel_multivar(ufaclst.op(0)*pp, x, epv, prime, l, uvec, C); if ( res != lst() ) { ex result = cont * ufaclst.op(0); for ( size_t i=0; i(e) ) { syms.insert(e); return e; } return e.map(*this); } }; static ex factor_sqrfree(const ex& poly) { // determine all symbols in poly find_symbols_map findsymbols; findsymbols(poly); if ( findsymbols.syms.size() == 0 ) { return poly; } if ( findsymbols.syms.size() == 1 ) { // univariate case const ex& x = *(findsymbols.syms.begin()); if ( poly.ldegree(x) > 0 ) { int ld = poly.ldegree(x); ex res = factor_univariate(expand(poly/pow(x, ld)), x); return res * pow(x,ld); } else { ex res = factor_univariate(poly, x); return res; } } // multivariate case ex res = factor_multivariate(poly, findsymbols.syms); return res; } struct apply_factor_map : public map_function { unsigned options; apply_factor_map(unsigned options_) : options(options_) { } ex operator()(const ex& e) { if ( e.info(info_flags::polynomial) ) { return factor(e, options); } if ( is_a(e) ) { ex s1, s2; for ( size_t i=0; i(sfpoly) ) { // case: (polynomial)^exponent const ex& base = sfpoly.op(0); if ( !is_a(base) ) { // simple case: (monomial)^exponent return sfpoly; } ex f = factor_sqrfree(base); return pow(f, sfpoly.op(1)); } if ( is_a(sfpoly) ) { // case: multiple factors ex res = 1; for ( size_t i=0; i(t) ) { const ex& base = t.op(0); if ( !is_a(base) ) { res *= t; } else { ex f = factor_sqrfree(base); res *= pow(f, t.op(1)); } } else if ( is_a(t) ) { ex f = factor_sqrfree(t); res *= f; } else { res *= t; } } return res; } if ( is_a(sfpoly) ) { return poly; } // case: (polynomial) ex f = factor_sqrfree(sfpoly); return f; } } // namespace GiNaC #ifdef DEBUGFACTOR #include "test.h" #endif