/** @file expairseq.h * * Interface to sequences of expression pairs. */ /* * GiNaC Copyright (C) 1999-2010 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef GINAC_EXPAIRSEQ_H #define GINAC_EXPAIRSEQ_H #include "expair.h" #include "indexed.h" // CINT needs to work properly with and #include #include #include #include namespace GiNaC { /** Using hash tables can potentially enhance the asymptotic behaviour of * combining n terms into one large sum (or n terms into one large product) * from O(n*log(n)) to about O(n). There are, however, several drawbacks. * The constant in front of O(n) is quite large, when copying such an object * one also has to copy the has table, comparison is quite expensive because * there is no ordering any more, it doesn't help at all when combining two * expairseqs because due to the presorted nature the behaviour would be * O(n) anyways, the code is quite messy, etc, etc. The code is here as * an example for following generations to tinker with. */ #define EXPAIRSEQ_USE_HASHTAB 0 typedef std::vector epvector; ///< expair-vector typedef epvector::iterator epp; ///< expair-vector pointer typedef std::list epplist; ///< list of expair-vector pointers typedef std::vector epplistvector; ///< vector of epplist /** Complex conjugate every element of an epvector. Returns zero if this * does not change anything. */ epvector* conjugateepvector(const epvector&); /** A sequence of class expair. * This is used for time-critical classes like sums and products of terms * since handling a list of coeff and rest is much faster than handling a * list of products or powers, respectively. (Not incidentally, Maple does it * the same way, maybe others too.) The semantics is (at least) twofold: * one for addition and one for multiplication and several methods have to * be overridden by derived classes to reflect the change in semantics. * However, most functionality turns out to be shared between addition and * multiplication, which is the reason why there is this base class. */ class expairseq : public basic { GINAC_DECLARE_REGISTERED_CLASS(expairseq, basic) // other constructors public: expairseq(const ex & lh, const ex & rh); expairseq(const exvector & v); expairseq(const epvector & v, const ex & oc, bool do_index_renaming = false); expairseq(std::auto_ptr, const ex & oc, bool do_index_renaming = false); // functions overriding virtual functions from base classes public: unsigned precedence() const {return 10;} bool info(unsigned inf) const; size_t nops() const; ex op(size_t i) const; ex map(map_function & f) const; ex eval(int level=0) const; ex to_rational(exmap & repl) const; ex to_polynomial(exmap & repl) const; bool match(const ex & pattern, exmap& repl_lst) const; ex subs(const exmap & m, unsigned options = 0) const; ex conjugate() const; bool is_polynomial(const ex & var) const; void archive(archive_node& n) const; void read_archive(const archive_node& n, lst& syms); protected: bool is_equal_same_type(const basic & other) const; unsigned return_type() const; unsigned calchash() const; ex expand(unsigned options=0) const; // new virtual functions which can be overridden by derived classes protected: virtual ex thisexpairseq(const epvector & v, const ex & oc, bool do_index_renaming = false) const; virtual ex thisexpairseq(std::auto_ptr vp, const ex & oc, bool do_index_renaming = false) const; virtual void printseq(const print_context & c, char delim, unsigned this_precedence, unsigned upper_precedence) const; virtual void printpair(const print_context & c, const expair & p, unsigned upper_precedence) const; virtual expair split_ex_to_pair(const ex & e) const; virtual expair combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const; virtual expair combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const; virtual ex recombine_pair_to_ex(const expair & p) const; virtual bool expair_needs_further_processing(epp it); virtual ex default_overall_coeff() const; virtual void combine_overall_coeff(const ex & c); virtual void combine_overall_coeff(const ex & c1, const ex & c2); virtual bool can_make_flat(const expair & p) const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_tree(const print_tree & c, unsigned level) const; void construct_from_2_ex_via_exvector(const ex & lh, const ex & rh); void construct_from_2_ex(const ex & lh, const ex & rh); void construct_from_2_expairseq(const expairseq & s1, const expairseq & s2); void construct_from_expairseq_ex(const expairseq & s, const ex & e); void construct_from_exvector(const exvector & v); void construct_from_epvector(const epvector & v, bool do_index_renaming = false); void make_flat(const exvector & v); void make_flat(const epvector & v, bool do_index_renaming = false); void canonicalize(); void combine_same_terms_sorted_seq(); #if EXPAIRSEQ_USE_HASHTAB void combine_same_terms(); unsigned calc_hashtabsize(unsigned sz) const; unsigned calc_hashindex(const ex & e) const; void shrink_hashtab(); void remove_hashtab_entry(epvector::const_iterator element); void move_hashtab_entry(epvector::const_iterator oldpos, epvector::iterator newpos); void sorted_insert(epplist & eppl, epvector::const_iterator elem); void build_hashtab_and_combine(epvector::iterator & first_numeric, epvector::iterator & last_non_zero, vector & touched, unsigned & number_of_zeroes); void drop_coeff_0_terms(epvector::iterator & first_numeric, epvector::iterator & last_non_zero, vector & touched, unsigned & number_of_zeroes); bool has_coeff_0() const; void add_numerics_to_hashtab(epvector::iterator first_numeric, epvector::const_iterator last_non_zero); #endif // EXPAIRSEQ_USE_HASHTAB bool is_canonical() const; std::auto_ptr expandchildren(unsigned options) const; std::auto_ptr evalchildren(int level) const; std::auto_ptr subschildren(const exmap & m, unsigned options = 0) const; // member variables protected: epvector seq; ex overall_coeff; #if EXPAIRSEQ_USE_HASHTAB epplistvector hashtab; unsigned hashtabsize; unsigned hashmask; static unsigned maxhashtabsize; static unsigned minhashtabsize; static unsigned hashtabfactor; #endif // EXPAIRSEQ_USE_HASHTAB }; /** Class to handle the renaming of dummy indices. It holds a vector of * indices that are being used in the expression so-far. If the same * index occurs again as a dummy index in a factor, it is to be renamed. * Unless dummy index renaming was swichted of, of course ;-) . */ class make_flat_inserter { public: make_flat_inserter(const epvector &epv, bool b): do_renaming(b) { if (!do_renaming) return; for (epvector::const_iterator i=epv.begin(); i!=epv.end(); ++i) if(are_ex_trivially_equal(i->coeff, 1)) combine_indices(i->rest.get_free_indices()); } make_flat_inserter(const exvector &v, bool b): do_renaming(b) { if (!do_renaming) return; for (exvector::const_iterator i=v.begin(); i!=v.end(); ++i) combine_indices(i->get_free_indices()); } ex handle_factor(const ex &x, const ex &coeff) { if (!do_renaming) return x; exvector dummies_of_factor; if (is_a(coeff) && coeff.is_equal(GiNaC::numeric(1))) dummies_of_factor = get_all_dummy_indices_safely(x); else if (is_a(coeff) && coeff.is_equal(GiNaC::numeric(2))) dummies_of_factor = x.get_free_indices(); else return x; if (dummies_of_factor.size() == 0) return x; sort(dummies_of_factor.begin(), dummies_of_factor.end(), ex_is_less()); ex new_factor = rename_dummy_indices_uniquely(used_indices, dummies_of_factor, x); combine_indices(dummies_of_factor); return new_factor; } private: void combine_indices(const exvector &dummies_of_factor) { exvector new_dummy_indices; set_union(used_indices.begin(), used_indices.end(), dummies_of_factor.begin(), dummies_of_factor.end(), std::back_insert_iterator(new_dummy_indices), ex_is_less()); used_indices.swap(new_dummy_indices); } bool do_renaming; exvector used_indices; }; } // namespace GiNaC #endif // ndef GINAC_EXPAIRSEQ_H