/** @file expairseq.h * * Interface to sequences of expression pairs. */ /* * GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef __GINAC_EXPAIRSEQ_H__ #define __GINAC_EXPAIRSEQ_H__ #include #include // CINT needs to work properly with and #include #include "expair.h" namespace GiNaC { /** Using hash tables can potentially enhance the asymptotic behaviour of * combining n terms into one large sum (or n terms into one large product) * from O(n*log(n)) to about O(n). There are, however, several drawbacks. * The constant in front of O(n) is quite large, when copying such an object * one also has to copy the has table, comparison is quite expensive because * there is no ordering any more, it doesn't help at all when combining two * expairseqs because due to the presorted nature the behaviour would be * O(n) anyways, the code is quite messy, etc, etc. The code is here as * an example for following generations to tinker with. */ #define EXPAIRSEQ_USE_HASHTAB 0 typedef std::vector epvector; ///< expair-vector typedef epvector::iterator epp; ///< expair-vector pointer typedef std::list epplist; ///< list of expair-vector pointers typedef std::vector epplistvector; ///< vector of epplist /** A sequence of class expair. * This is used for time-critical classes like sums and products of terms * since handling a list of coeff and rest is much faster than handling a * list of products or powers, respectively. (Not incidentally, Maple does it * the same way, maybe others too.) The semantics is (at least) twofold: * one for addition and one for multiplication and several methods have to * be overridden by derived classes to reflect the change in semantics. * However, most functionality turns out to be shared between addition and * multiplication, which is the reason why there is this base class. */ class expairseq : public basic { GINAC_DECLARE_REGISTERED_CLASS_NO_CTORS(expairseq, basic) // member functions // default ctor, dtor, copy ctor, assignment operator and helpers public: expairseq() : basic(TINFO_expairseq) #if EXPAIRSEQ_USE_HASHTAB , hashtabsize(0) #endif // EXPAIRSEQ_USE_HASHTAB { } ~expairseq() { destroy(false); } expairseq(const expairseq & other); const expairseq & operator=(const expairseq & other); protected: void copy(const expairseq & other); void destroy(bool call_parent); // other ctors public: expairseq(const ex & lh, const ex & rh); expairseq(const exvector & v); expairseq(const epvector & v, const ex & oc); expairseq(epvector * vp, const ex & oc); // vp will be deleted // functions overriding virtual functions from base classes public: basic * duplicate() const; void print(const print_context & c, unsigned level = 0) const; unsigned precedence(void) const {return 10;} bool info(unsigned inf) const; unsigned nops() const; ex op(int i) const; ex & let_op(int i); ex map(map_function & f) const; ex eval(int level=0) const; ex to_rational(lst &repl_lst) const; bool match(const ex & pattern, lst & repl_lst) const; ex subs(const lst & ls, const lst & lr, bool no_pattern = false) const; protected: int compare_same_type(const basic & other) const; bool is_equal_same_type(const basic & other) const; unsigned return_type(void) const; unsigned calchash(void) const; ex expand(unsigned options=0) const; // new virtual functions which can be overridden by derived classes protected: virtual ex thisexpairseq(const epvector & v, const ex & oc) const; virtual ex thisexpairseq(epvector * vp, const ex & oc) const; virtual void printseq(const print_context & c, char delim, unsigned this_precedence, unsigned upper_precedence) const; virtual void printpair(const print_context & c, const expair & p, unsigned upper_precedence) const; virtual expair split_ex_to_pair(const ex & e) const; virtual expair combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const; virtual expair combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const; virtual ex recombine_pair_to_ex(const expair & p) const; virtual bool expair_needs_further_processing(epp it); virtual ex default_overall_coeff(void) const; virtual void combine_overall_coeff(const ex & c); virtual void combine_overall_coeff(const ex & c1, const ex & c2); virtual bool can_make_flat(const expair & p) const; // non-virtual functions in this class protected: void construct_from_2_ex_via_exvector(const ex & lh, const ex & rh); void construct_from_2_ex(const ex & lh, const ex & rh); void construct_from_2_expairseq(const expairseq & s1, const expairseq & s2); void construct_from_expairseq_ex(const expairseq & s, const ex & e); void construct_from_exvector(const exvector & v); void construct_from_epvector(const epvector & v); void make_flat(const exvector & v); void make_flat(const epvector & v); void canonicalize(void); void combine_same_terms_sorted_seq(void); #if EXPAIRSEQ_USE_HASHTAB void combine_same_terms(void); unsigned calc_hashtabsize(unsigned sz) const; unsigned calc_hashindex(const ex & e) const; void shrink_hashtab(void); void remove_hashtab_entry(epvector::const_iterator element); void move_hashtab_entry(epvector::const_iterator oldpos, epvector::iterator newpos); void sorted_insert(epplist & eppl, epvector::const_iterator elem); void build_hashtab_and_combine(epvector::iterator & first_numeric, epvector::iterator & last_non_zero, vector & touched, unsigned & number_of_zeroes); void drop_coeff_0_terms(epvector::iterator & first_numeric, epvector::iterator & last_non_zero, vector & touched, unsigned & number_of_zeroes); bool has_coeff_0(void) const; void add_numerics_to_hashtab(epvector::iterator first_numeric, epvector::const_iterator last_non_zero); #endif // EXPAIRSEQ_USE_HASHTAB bool is_canonical() const; epvector * expandchildren(unsigned options) const; epvector * evalchildren(int level) const; epvector * subschildren(const lst & ls, const lst & lr, bool no_pattern = false) const; // member variables protected: epvector seq; ex overall_coeff; #if EXPAIRSEQ_USE_HASHTAB epplistvector hashtab; unsigned hashtabsize; unsigned hashmask; static unsigned maxhashtabsize; static unsigned minhashtabsize; static unsigned hashtabfactor; #endif // EXPAIRSEQ_USE_HASHTAB }; // utility functions /** Specialization of is_exactly_a(obj) for expairseq objects. */ template<> inline bool is_exactly_a(const basic & obj) { return obj.tinfo()==TINFO_expairseq; } } // namespace GiNaC #endif // ndef __GINAC_EXPAIRSEQ_H__