/** @file expairseq.cpp * * Implementation of sequences of expression pairs. */ /* * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include "expairseq.h" #include "lst.h" #include "mul.h" #include "power.h" #include "relational.h" #include "wildcard.h" #include "archive.h" #include "operators.h" #include "utils.h" #if EXPAIRSEQ_USE_HASHTAB #include #endif // EXPAIRSEQ_USE_HASHTAB namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(expairseq, basic, print_func(&expairseq::do_print). print_func(&expairseq::do_print_tree)) ////////// // helper classes ////////// class epp_is_less { public: bool operator()(const epp &lh, const epp &rh) const { return (*lh).is_less(*rh); } }; ////////// // default constructor ////////// // public expairseq::expairseq() : inherited(TINFO_expairseq) #if EXPAIRSEQ_USE_HASHTAB , hashtabsize(0) #endif // EXPAIRSEQ_USE_HASHTAB {} // protected #if 0 /** For use by copy ctor and assignment operator. */ void expairseq::copy(const expairseq &other) { seq = other.seq; overall_coeff = other.overall_coeff; #if EXPAIRSEQ_USE_HASHTAB // copy hashtab hashtabsize = other.hashtabsize; if (hashtabsize!=0) { hashmask = other.hashmask; hashtab.resize(hashtabsize); epvector::const_iterator osb = other.seq.begin(); for (unsigned i=0; i(oc)); construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } expairseq::expairseq(epvector *vp, const ex &oc) : inherited(TINFO_expairseq), overall_coeff(oc) { GINAC_ASSERT(vp!=0); GINAC_ASSERT(is_a(oc)); construct_from_epvector(*vp); delete vp; GINAC_ASSERT(is_canonical()); } ////////// // archiving ////////// expairseq::expairseq(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) #if EXPAIRSEQ_USE_HASHTAB , hashtabsize(0) #endif { for (unsigned int i=0; true; i++) { ex rest; ex coeff; if (n.find_ex("rest", rest, sym_lst, i) && n.find_ex("coeff", coeff, sym_lst, i)) seq.push_back(expair(rest, coeff)); else break; } n.find_ex("overall_coeff", overall_coeff, sym_lst); canonicalize(); GINAC_ASSERT(is_canonical()); } void expairseq::archive(archive_node &n) const { inherited::archive(n); epvector::const_iterator i = seq.begin(), iend = seq.end(); while (i != iend) { n.add_ex("rest", i->rest); n.add_ex("coeff", i->coeff); ++i; } n.add_ex("overall_coeff", overall_coeff); } DEFAULT_UNARCHIVE(expairseq) ////////// // functions overriding virtual functions from base classes ////////// // public void expairseq::do_print(const print_context & c, unsigned level) const { c.s << "[["; printseq(c, ',', precedence(), level); c.s << "]]"; } void expairseq::do_print_tree(const print_tree & c, unsigned level) const { c.s << std::string(level, ' ') << class_name() << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << ", nops=" << nops() << std::endl; size_t num = seq.size(); for (size_t i=0; i 0) { c.s << std::string(level + c.delta_indent, ' ') << "bin " << i << " with entries "; for (epplist::const_iterator it=hashtab[i].begin(); it!=hashtab[i].end(); ++it) { c.s << *it-seq.begin() << " "; ++this_bin_fill; } c.s << std::endl; cum_fill += this_bin_fill; cum_fill_sq += this_bin_fill*this_bin_fill; } if (this_bin_fill0) fact *= k; double prob = std::pow(lambda,k)/fact * std::exp(-lambda); cum_prob += prob; c.s << std::string(level + c.delta_indent, ' ') << "bins with " << k << " entries: " << int(1000.0*count[k]/hashtabsize)/10.0 << "% (expected: " << int(prob*1000)/10.0 << ")" << std::endl; } c.s << std::string(level + c.delta_indent, ' ') << "bins with more entries: " << int(1000.0*count[MAXCOUNT]/hashtabsize)/10.0 << "% (expected: " << int((1-cum_prob)*1000)/10.0 << ")" << std::endl; c.s << std::string(level + c.delta_indent, ' ') << "variance: " << 1.0/hashtabsize*cum_fill_sq-(1.0/hashtabsize*cum_fill)*(1.0/hashtabsize*cum_fill) << std::endl; c.s << std::string(level + c.delta_indent, ' ') << "average fill: " << (1.0*cum_fill)/hashtabsize << " (should be equal to " << (1.0*seq.size())/hashtabsize << ")" << std::endl; #endif // EXPAIRSEQ_USE_HASHTAB } bool expairseq::info(unsigned inf) const { return inherited::info(inf); } size_t expairseq::nops() const { if (overall_coeff.is_equal(default_overall_coeff())) return seq.size(); else return seq.size()+1; } ex expairseq::op(size_t i) const { if (i < seq.size()) return recombine_pair_to_ex(seq[i]); GINAC_ASSERT(!overall_coeff.is_equal(default_overall_coeff())); return overall_coeff; } ex expairseq::map(map_function &f) const { epvector *v = new epvector; v->reserve(seq.size()); epvector::const_iterator cit = seq.begin(), last = seq.end(); while (cit != last) { v->push_back(split_ex_to_pair(f(recombine_pair_to_ex(*cit)))); ++cit; } if (overall_coeff.is_equal(default_overall_coeff())) return thisexpairseq(v, default_overall_coeff()); else return thisexpairseq(v, f(overall_coeff)); } /** Perform coefficient-wise automatic term rewriting rules in this class. */ ex expairseq::eval(int level) const { if ((level==1) && (flags &status_flags::evaluated)) return *this; epvector *vp = evalchildren(level); if (vp==0) return this->hold(); return (new expairseq(vp,overall_coeff))->setflag(status_flags::dynallocated | status_flags::evaluated); } bool expairseq::match(const ex & pattern, lst & repl_lst) const { // This differs from basic::match() because we want "a+b+c+d" to // match "d+*+b" with "*" being "a+c", and we want to honor commutativity if (this->tinfo() == ex_to(pattern).tinfo()) { // Check whether global wildcard (one that matches the "rest of the // expression", like "*" above) is present bool has_global_wildcard = false; ex global_wildcard; for (size_t i=0; i(pattern.op(i))) { has_global_wildcard = true; global_wildcard = pattern.op(i); break; } } // Unfortunately, this is an O(N^2) operation because we can't // sort the pattern in a useful way... // Chop into terms exvector ops; ops.reserve(nops()); for (size_t i=0; imatch(p, repl_lst)) { ops.erase(it); goto found; } ++it; } return false; // no match found found: ; } if (has_global_wildcard) { // Assign all the remaining terms to the global wildcard (unless // it has already been matched before, in which case the matches // must be equal) size_t num = ops.size(); epvector *vp = new epvector(); vp->reserve(num); for (size_t i=0; ipush_back(split_ex_to_pair(ops[i])); ex rest = thisexpairseq(vp, default_overall_coeff()); for (lst::const_iterator it = repl_lst.begin(); it != repl_lst.end(); ++it) { if (it->op(0).is_equal(global_wildcard)) return rest.is_equal(it->op(1)); } repl_lst.append(global_wildcard == rest); return true; } else { // No global wildcard, then the match fails if there are any // unmatched terms left return ops.empty(); } } return inherited::match(pattern, repl_lst); } ex expairseq::subs(const exmap & m, unsigned options) const { epvector *vp = subschildren(m, options); if (vp) return ex_to(thisexpairseq(vp, overall_coeff)); else if ((options & subs_options::algebraic) && is_exactly_a(*this)) return static_cast(this)->algebraic_subs_mul(m, options); else return subs_one_level(m, options); } // protected int expairseq::compare_same_type(const basic &other) const { GINAC_ASSERT(is_a(other)); const expairseq &o = static_cast(other); int cmpval; // compare number of elements if (seq.size() != o.seq.size()) return (seq.size()0) { const epplist &eppl1 = hashtab[i]; const epplist &eppl2 = o.hashtab[i]; epplist::const_iterator it1 = eppl1.begin(); epplist::const_iterator it2 = eppl2.begin(); while (it1!=eppl1.end()) { cmpval = (*(*it1)).compare(*(*it2)); if (cmpval!=0) return cmpval; ++it1; ++it2; } } } return 0; // equal #endif // EXPAIRSEQ_USE_HASHTAB } bool expairseq::is_equal_same_type(const basic &other) const { const expairseq &o = static_cast(other); // compare number of elements if (seq.size()!=o.seq.size()) return false; // compare overall_coeff if (!overall_coeff.is_equal(o.overall_coeff)) return false; #if EXPAIRSEQ_USE_HASHTAB // compare number of elements in each hashtab entry if (hashtabsize!=o.hashtabsize) { std::cout << "this:" << std::endl; print(print_tree(std::cout)); std::cout << "other:" << std::endl; other.print(print_tree(std::cout)); } GINAC_ASSERT(hashtabsize==o.hashtabsize); if (hashtabsize==0) { #endif // EXPAIRSEQ_USE_HASHTAB epvector::const_iterator cit1 = seq.begin(); epvector::const_iterator cit2 = o.seq.begin(); epvector::const_iterator last1 = seq.end(); while (cit1!=last1) { if (!(*cit1).is_equal(*cit2)) return false; ++cit1; ++cit2; } return true; #if EXPAIRSEQ_USE_HASHTAB } for (unsigned i=0; i0) { const epplist &eppl1 = hashtab[i]; const epplist &eppl2 = o.hashtab[i]; epplist::const_iterator it1 = eppl1.begin(); epplist::const_iterator it2 = eppl2.begin(); while (it1!=eppl1.end()) { if (!(*(*it1)).is_equal(*(*it2))) return false; ++it1; ++it2; } } } return true; #endif // EXPAIRSEQ_USE_HASHTAB } unsigned expairseq::return_type() const { return return_types::noncommutative_composite; } unsigned expairseq::calchash() const { unsigned v = golden_ratio_hash(this->tinfo()); epvector::const_iterator i = seq.begin(); const epvector::const_iterator end = seq.end(); while (i != end) { v ^= i->rest.gethash(); #if !EXPAIRSEQ_USE_HASHTAB // rotation spoils commutativity! v = rotate_left(v); v ^= i->coeff.gethash(); #endif // !EXPAIRSEQ_USE_HASHTAB ++i; } v ^= overall_coeff.gethash(); // store calculated hash value only if object is already evaluated if (flags &status_flags::evaluated) { setflag(status_flags::hash_calculated); hashvalue = v; } return v; } ex expairseq::expand(unsigned options) const { epvector *vp = expandchildren(options); if (vp == NULL) { // The terms have not changed, so it is safe to declare this expanded return (options == 0) ? setflag(status_flags::expanded) : *this; } else return thisexpairseq(vp, overall_coeff); } ////////// // new virtual functions which can be overridden by derived classes ////////// // protected /** Create an object of this type. * This method works similar to a constructor. It is useful because expairseq * has (at least) two possible different semantics but we want to inherit * methods thus avoiding code duplication. Sometimes a method in expairseq * has to create a new one of the same semantics, which cannot be done by a * ctor because the name (add, mul,...) is unknown on the expaiseq level. In * order for this trick to work a derived class must of course override this * definition. */ ex expairseq::thisexpairseq(const epvector &v, const ex &oc) const { return expairseq(v,oc); } ex expairseq::thisexpairseq(epvector *vp, const ex &oc) const { return expairseq(vp,oc); } void expairseq::printpair(const print_context & c, const expair & p, unsigned upper_precedence) const { c.s << "[["; p.rest.print(c, precedence()); c.s << ","; p.coeff.print(c, precedence()); c.s << "]]"; } void expairseq::printseq(const print_context & c, char delim, unsigned this_precedence, unsigned upper_precedence) const { if (this_precedence <= upper_precedence) c.s << "("; epvector::const_iterator it, it_last = seq.end() - 1; for (it=seq.begin(); it!=it_last; ++it) { printpair(c, *it, this_precedence); c.s << delim; } printpair(c, *it, this_precedence); if (!overall_coeff.is_equal(default_overall_coeff())) { c.s << delim; overall_coeff.print(c, this_precedence); } if (this_precedence <= upper_precedence) c.s << ")"; } /** Form an expair from an ex, using the corresponding semantics. * @see expairseq::recombine_pair_to_ex() */ expair expairseq::split_ex_to_pair(const ex &e) const { return expair(e,_ex1); } expair expairseq::combine_ex_with_coeff_to_pair(const ex &e, const ex &c) const { GINAC_ASSERT(is_exactly_a(c)); return expair(e,c); } expair expairseq::combine_pair_with_coeff_to_pair(const expair &p, const ex &c) const { GINAC_ASSERT(is_exactly_a(p.coeff)); GINAC_ASSERT(is_exactly_a(c)); return expair(p.rest,ex_to(p.coeff).mul_dyn(ex_to(c))); } /** Form an ex out of an expair, using the corresponding semantics. * @see expairseq::split_ex_to_pair() */ ex expairseq::recombine_pair_to_ex(const expair &p) const { return lst(p.rest,p.coeff); } bool expairseq::expair_needs_further_processing(epp it) { #if EXPAIRSEQ_USE_HASHTAB //# error "FIXME: expair_needs_further_processing not yet implemented for hashtabs, sorry. A.F." #endif // EXPAIRSEQ_USE_HASHTAB return false; } ex expairseq::default_overall_coeff() const { return _ex0; } void expairseq::combine_overall_coeff(const ex &c) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c)); overall_coeff = ex_to(overall_coeff).add_dyn(ex_to(c)); } void expairseq::combine_overall_coeff(const ex &c1, const ex &c2) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c1)); GINAC_ASSERT(is_exactly_a(c2)); overall_coeff = ex_to(overall_coeff). add_dyn(ex_to(c1).mul(ex_to(c2))); } bool expairseq::can_make_flat(const expair &p) const { return true; } ////////// // non-virtual functions in this class ////////// void expairseq::construct_from_2_ex_via_exvector(const ex &lh, const ex &rh) { exvector v; v.reserve(2); v.push_back(lh); v.push_back(rh); construct_from_exvector(v); #if EXPAIRSEQ_USE_HASHTAB GINAC_ASSERT((hashtabsize==0)||(hashtabsize>=minhashtabsize)); GINAC_ASSERT(hashtabsize==calc_hashtabsize(seq.size())); #endif // EXPAIRSEQ_USE_HASHTAB } void expairseq::construct_from_2_ex(const ex &lh, const ex &rh) { if (ex_to(lh).tinfo()==this->tinfo()) { if (ex_to(rh).tinfo()==this->tinfo()) { #if EXPAIRSEQ_USE_HASHTAB unsigned totalsize = ex_to(lh).seq.size() + ex_to(rh).seq.size(); if (calc_hashtabsize(totalsize)!=0) { construct_from_2_ex_via_exvector(lh,rh); } else { #endif // EXPAIRSEQ_USE_HASHTAB construct_from_2_expairseq(ex_to(lh), ex_to(rh)); #if EXPAIRSEQ_USE_HASHTAB } #endif // EXPAIRSEQ_USE_HASHTAB return; } else { #if EXPAIRSEQ_USE_HASHTAB unsigned totalsize = ex_to(lh).seq.size()+1; if (calc_hashtabsize(totalsize)!=0) { construct_from_2_ex_via_exvector(lh, rh); } else { #endif // EXPAIRSEQ_USE_HASHTAB construct_from_expairseq_ex(ex_to(lh), rh); #if EXPAIRSEQ_USE_HASHTAB } #endif // EXPAIRSEQ_USE_HASHTAB return; } } else if (ex_to(rh).tinfo()==this->tinfo()) { #if EXPAIRSEQ_USE_HASHTAB unsigned totalsize=ex_to(rh).seq.size()+1; if (calc_hashtabsize(totalsize)!=0) { construct_from_2_ex_via_exvector(lh,rh); } else { #endif // EXPAIRSEQ_USE_HASHTAB construct_from_expairseq_ex(ex_to(rh),lh); #if EXPAIRSEQ_USE_HASHTAB } #endif // EXPAIRSEQ_USE_HASHTAB return; } #if EXPAIRSEQ_USE_HASHTAB if (calc_hashtabsize(2)!=0) { construct_from_2_ex_via_exvector(lh,rh); return; } hashtabsize = 0; #endif // EXPAIRSEQ_USE_HASHTAB if (is_exactly_a(lh)) { if (is_exactly_a(rh)) { combine_overall_coeff(lh); combine_overall_coeff(rh); } else { combine_overall_coeff(lh); seq.push_back(split_ex_to_pair(rh)); } } else { if (is_exactly_a(rh)) { combine_overall_coeff(rh); seq.push_back(split_ex_to_pair(lh)); } else { expair p1 = split_ex_to_pair(lh); expair p2 = split_ex_to_pair(rh); int cmpval = p1.rest.compare(p2.rest); if (cmpval==0) { p1.coeff = ex_to(p1.coeff).add_dyn(ex_to(p2.coeff)); if (!ex_to(p1.coeff).is_zero()) { // no further processing is necessary, since this // one element will usually be recombined in eval() seq.push_back(p1); } } else { seq.reserve(2); if (cmpval<0) { seq.push_back(p1); seq.push_back(p2); } else { seq.push_back(p2); seq.push_back(p1); } } } } } void expairseq::construct_from_2_expairseq(const expairseq &s1, const expairseq &s2) { combine_overall_coeff(s1.overall_coeff); combine_overall_coeff(s2.overall_coeff); epvector::const_iterator first1 = s1.seq.begin(); epvector::const_iterator last1 = s1.seq.end(); epvector::const_iterator first2 = s2.seq.begin(); epvector::const_iterator last2 = s2.seq.end(); seq.reserve(s1.seq.size()+s2.seq.size()); bool needs_further_processing=false; while (first1!=last1 && first2!=last2) { int cmpval = (*first1).rest.compare((*first2).rest); if (cmpval==0) { // combine terms const numeric &newcoeff = ex_to(first1->coeff). add(ex_to(first2->coeff)); if (!newcoeff.is_zero()) { seq.push_back(expair(first1->rest,newcoeff)); if (expair_needs_further_processing(seq.end()-1)) { needs_further_processing = true; } } ++first1; ++first2; } else if (cmpval<0) { seq.push_back(*first1); ++first1; } else { seq.push_back(*first2); ++first2; } } while (first1!=last1) { seq.push_back(*first1); ++first1; } while (first2!=last2) { seq.push_back(*first2); ++first2; } if (needs_further_processing) { epvector v = seq; seq.clear(); construct_from_epvector(v); } } void expairseq::construct_from_expairseq_ex(const expairseq &s, const ex &e) { combine_overall_coeff(s.overall_coeff); if (is_exactly_a(e)) { combine_overall_coeff(e); seq = s.seq; return; } epvector::const_iterator first = s.seq.begin(); epvector::const_iterator last = s.seq.end(); expair p = split_ex_to_pair(e); seq.reserve(s.seq.size()+1); bool p_pushed = false; bool needs_further_processing=false; // merge p into s.seq while (first!=last) { int cmpval = (*first).rest.compare(p.rest); if (cmpval==0) { // combine terms const numeric &newcoeff = ex_to(first->coeff). add(ex_to(p.coeff)); if (!newcoeff.is_zero()) { seq.push_back(expair(first->rest,newcoeff)); if (expair_needs_further_processing(seq.end()-1)) needs_further_processing = true; } ++first; p_pushed = true; break; } else if (cmpval<0) { seq.push_back(*first); ++first; } else { seq.push_back(p); p_pushed = true; break; } } if (p_pushed) { // while loop exited because p was pushed, now push rest of s.seq while (first!=last) { seq.push_back(*first); ++first; } } else { // while loop exited because s.seq was pushed, now push p seq.push_back(p); } if (needs_further_processing) { epvector v = seq; seq.clear(); construct_from_epvector(v); } } void expairseq::construct_from_exvector(const exvector &v) { // simplifications: +(a,+(b,c),d) -> +(a,b,c,d) (associativity) // +(d,b,c,a) -> +(a,b,c,d) (canonicalization) // +(...,x,*(x,c1),*(x,c2)) -> +(...,*(x,1+c1+c2)) (c1, c2 numeric()) // (same for (+,*) -> (*,^) make_flat(v); #if EXPAIRSEQ_USE_HASHTAB combine_same_terms(); #else canonicalize(); combine_same_terms_sorted_seq(); #endif // EXPAIRSEQ_USE_HASHTAB } void expairseq::construct_from_epvector(const epvector &v) { // simplifications: +(a,+(b,c),d) -> +(a,b,c,d) (associativity) // +(d,b,c,a) -> +(a,b,c,d) (canonicalization) // +(...,x,*(x,c1),*(x,c2)) -> +(...,*(x,1+c1+c2)) (c1, c2 numeric()) // (same for (+,*) -> (*,^) make_flat(v); #if EXPAIRSEQ_USE_HASHTAB combine_same_terms(); #else canonicalize(); combine_same_terms_sorted_seq(); #endif // EXPAIRSEQ_USE_HASHTAB } /** Combine this expairseq with argument exvector. * It cares for associativity as well as for special handling of numerics. */ void expairseq::make_flat(const exvector &v) { exvector::const_iterator cit; // count number of operands which are of same expairseq derived type // and their cumulative number of operands int nexpairseqs = 0; int noperands = 0; cit = v.begin(); while (cit!=v.end()) { if (ex_to(*cit).tinfo()==this->tinfo()) { ++nexpairseqs; noperands += ex_to(*cit).seq.size(); } ++cit; } // reserve seq and coeffseq which will hold all operands seq.reserve(v.size()+noperands-nexpairseqs); // copy elements and split off numerical part cit = v.begin(); while (cit!=v.end()) { if (ex_to(*cit).tinfo()==this->tinfo()) { const expairseq &subseqref = ex_to(*cit); combine_overall_coeff(subseqref.overall_coeff); epvector::const_iterator cit_s = subseqref.seq.begin(); while (cit_s!=subseqref.seq.end()) { seq.push_back(*cit_s); ++cit_s; } } else { if (is_exactly_a(*cit)) combine_overall_coeff(*cit); else seq.push_back(split_ex_to_pair(*cit)); } ++cit; } } /** Combine this expairseq with argument epvector. * It cares for associativity as well as for special handling of numerics. */ void expairseq::make_flat(const epvector &v) { epvector::const_iterator cit; // count number of operands which are of same expairseq derived type // and their cumulative number of operands int nexpairseqs = 0; int noperands = 0; cit = v.begin(); while (cit!=v.end()) { if (ex_to(cit->rest).tinfo()==this->tinfo()) { ++nexpairseqs; noperands += ex_to(cit->rest).seq.size(); } ++cit; } // reserve seq and coeffseq which will hold all operands seq.reserve(v.size()+noperands-nexpairseqs); // copy elements and split off numerical part cit = v.begin(); while (cit!=v.end()) { if (ex_to(cit->rest).tinfo()==this->tinfo() && this->can_make_flat(*cit)) { const expairseq &subseqref = ex_to(cit->rest); combine_overall_coeff(ex_to(subseqref.overall_coeff), ex_to(cit->coeff)); epvector::const_iterator cit_s = subseqref.seq.begin(); while (cit_s!=subseqref.seq.end()) { seq.push_back(expair(cit_s->rest, ex_to(cit_s->coeff).mul_dyn(ex_to(cit->coeff)))); //seq.push_back(combine_pair_with_coeff_to_pair(*cit_s, // (*cit).coeff)); ++cit_s; } } else { if (cit->is_canonical_numeric()) combine_overall_coeff(cit->rest); else seq.push_back(*cit); } ++cit; } } /** Brings this expairseq into a sorted (canonical) form. */ void expairseq::canonicalize() { std::sort(seq.begin(), seq.end(), expair_rest_is_less()); } /** Compact a presorted expairseq by combining all matching expairs to one * each. On an add object, this is responsible for 2*x+3*x+y -> 5*x+y, for * instance. */ void expairseq::combine_same_terms_sorted_seq() { if (seq.size()<2) return; bool needs_further_processing = false; epvector::iterator itin1 = seq.begin(); epvector::iterator itin2 = itin1+1; epvector::iterator itout = itin1; epvector::iterator last = seq.end(); // must_copy will be set to true the first time some combination is // possible from then on the sequence has changed and must be compacted bool must_copy = false; while (itin2!=last) { if (itin1->rest.compare(itin2->rest)==0) { itin1->coeff = ex_to(itin1->coeff). add_dyn(ex_to(itin2->coeff)); if (expair_needs_further_processing(itin1)) needs_further_processing = true; must_copy = true; } else { if (!ex_to(itin1->coeff).is_zero()) { if (must_copy) *itout = *itin1; ++itout; } itin1 = itin2; } ++itin2; } if (!ex_to(itin1->coeff).is_zero()) { if (must_copy) *itout = *itin1; ++itout; } if (itout!=last) seq.erase(itout,last); if (needs_further_processing) { epvector v = seq; seq.clear(); construct_from_epvector(v); } } #if EXPAIRSEQ_USE_HASHTAB unsigned expairseq::calc_hashtabsize(unsigned sz) const { unsigned size; unsigned nearest_power_of_2 = 1 << log2(sz); // if (nearest_power_of_2 < maxhashtabsize/hashtabfactor) { // size = nearest_power_of_2*hashtabfactor; size = nearest_power_of_2/hashtabfactor; if (size(e)) { hashindex = hashmask; } else { hashindex = e.gethash() & hashmask; // last hashtab entry is reserved for numerics if (hashindex==hashmask) hashindex = 0; } GINAC_ASSERT((hashindexrest); epplist &eppl = hashtab[hashindex]; epplist::iterator epplit = eppl.begin(); bool erased = false; while (epplit!=eppl.end()) { if (*epplit == element) { eppl.erase(epplit); erased = true; break; } ++epplit; } GINAC_ASSERT(erased); } GINAC_ASSERT(erased); } void expairseq::move_hashtab_entry(epvector::const_iterator oldpos, epvector::iterator newpos) { GINAC_ASSERT(hashtabsize!=0); // calculate hashindex of element which was moved unsigned hashindex=calc_hashindex((*newpos).rest); // find it in hashtab and modify it epplist &eppl = hashtab[hashindex]; epplist::iterator epplit = eppl.begin(); while (epplit!=eppl.end()) { if (*epplit == oldpos) { *epplit = newpos; break; } ++epplit; } GINAC_ASSERT(epplit!=eppl.end()); } void expairseq::sorted_insert(epplist &eppl, epvector::const_iterator elem) { epplist::const_iterator current = eppl.begin(); while ((current!=eppl.end()) && ((*current)->is_less(*elem))) { ++current; } eppl.insert(current,elem); } void expairseq::build_hashtab_and_combine(epvector::iterator &first_numeric, epvector::iterator &last_non_zero, std::vector &touched, unsigned &number_of_zeroes) { epp current = seq.begin(); while (current!=first_numeric) { if (is_exactly_a(current->rest)) { --first_numeric; iter_swap(current,first_numeric); } else { // calculate hashindex unsigned currenthashindex = calc_hashindex(current->rest); // test if there is already a matching expair in the hashtab-list epplist &eppl=hashtab[currenthashindex]; epplist::iterator epplit = eppl.begin(); while (epplit!=eppl.end()) { if (current->rest.is_equal((*epplit)->rest)) break; ++epplit; } if (epplit==eppl.end()) { // no matching expair found, append this to end of list sorted_insert(eppl,current); ++current; } else { // epplit points to a matching expair, combine it with current (*epplit)->coeff = ex_to((*epplit)->coeff). add_dyn(ex_to(current->coeff)); // move obsolete current expair to end by swapping with last_non_zero element // if this was a numeric, it is swapped with the expair before first_numeric iter_swap(current,last_non_zero); --first_numeric; if (first_numeric!=last_non_zero) iter_swap(first_numeric,current); --last_non_zero; ++number_of_zeroes; // test if combined term has coeff 0 and can be removed is done later touched[(*epplit)-seq.begin()] = true; } } } } void expairseq::drop_coeff_0_terms(epvector::iterator &first_numeric, epvector::iterator &last_non_zero, std::vector &touched, unsigned &number_of_zeroes) { // move terms with coeff 0 to end and remove them from hashtab // check only those elements which have been touched epp current = seq.begin(); size_t i = 0; while (current!=first_numeric) { if (!touched[i]) { ++current; ++i; } else if (!ex_to((*current).coeff).is_zero()) { ++current; ++i; } else { remove_hashtab_entry(current); // move element to the end, unless it is already at the end if (current!=last_non_zero) { iter_swap(current,last_non_zero); --first_numeric; bool numeric_swapped = first_numeric!=last_non_zero; if (numeric_swapped) iter_swap(first_numeric,current); epvector::iterator changed_entry; if (numeric_swapped) changed_entry = first_numeric; else changed_entry = last_non_zero; --last_non_zero; ++number_of_zeroes; if (first_numeric!=current) { // change entry in hashtab which referred to first_numeric or last_non_zero to current move_hashtab_entry(changed_entry,current); touched[current-seq.begin()] = touched[changed_entry-seq.begin()]; } } else { --first_numeric; --last_non_zero; ++number_of_zeroes; } } } GINAC_ASSERT(i==current-seq.begin()); } /** True if one of the coeffs vanishes, otherwise false. * This would be an invariant violation, so this should only be used for * debugging purposes. */ bool expairseq::has_coeff_0() const { epvector::const_iterator i = seq.begin(), end = seq.end(); while (i != end) { if (i->coeff.is_zero()) return true; ++i; } return false; } void expairseq::add_numerics_to_hashtab(epvector::iterator first_numeric, epvector::const_iterator last_non_zero) { if (first_numeric == seq.end()) return; // no numerics epvector::const_iterator current = first_numeric, last = last_non_zero + 1; while (current != last) { sorted_insert(hashtab[hashmask], current); ++current; } } void expairseq::combine_same_terms() { // combine same terms, drop term with coeff 0, move numerics to end // calculate size of hashtab hashtabsize = calc_hashtabsize(seq.size()); // hashtabsize is a power of 2 hashmask = hashtabsize-1; // allocate hashtab hashtab.clear(); hashtab.resize(hashtabsize); if (hashtabsize==0) { canonicalize(); combine_same_terms_sorted_seq(); GINAC_ASSERT(!has_coeff_0()); return; } // iterate through seq, move numerics to end, // fill hashtab and combine same terms epvector::iterator first_numeric = seq.end(); epvector::iterator last_non_zero = seq.end()-1; size_t num = seq.size(); std::vector touched(num); unsigned number_of_zeroes = 0; GINAC_ASSERT(!has_coeff_0()); build_hashtab_and_combine(first_numeric,last_non_zero,touched,number_of_zeroes); // there should not be any terms with coeff 0 from the beginning, // so it should be safe to skip this step if (number_of_zeroes!=0) { drop_coeff_0_terms(first_numeric,last_non_zero,touched,number_of_zeroes); } add_numerics_to_hashtab(first_numeric,last_non_zero); // pop zero elements for (unsigned i=0; i 0) return 1; // not canoncalized #endif // EXPAIRSEQ_USE_HASHTAB epvector::const_iterator it = seq.begin(), itend = seq.end(); epvector::const_iterator it_last = it; for (++it; it!=itend; it_last=it, ++it) { if (!(it_last->is_less(*it) || it_last->is_equal(*it))) { if (!is_exactly_a(it_last->rest) || !is_exactly_a(it->rest)) { // double test makes it easier to set a breakpoint... if (!is_exactly_a(it_last->rest) || !is_exactly_a(it->rest)) { printpair(std::clog, *it_last, 0); std::clog << ">"; printpair(std::clog, *it, 0); std::clog << "\n"; std::clog << "pair1:" << std::endl; it_last->rest.print(print_tree(std::clog)); it_last->coeff.print(print_tree(std::clog)); std::clog << "pair2:" << std::endl; it->rest.print(print_tree(std::clog)); it->coeff.print(print_tree(std::clog)); return 0; } } } } return 1; } /** Member-wise expand the expairs in this sequence. * * @see expairseq::expand() * @return pointer to epvector containing expanded pairs or zero pointer, * if no members were changed. */ epvector * expairseq::expandchildren(unsigned options) const { const epvector::const_iterator last = seq.end(); epvector::const_iterator cit = seq.begin(); while (cit!=last) { const ex &expanded_ex = cit->rest.expand(options); if (!are_ex_trivially_equal(cit->rest,expanded_ex)) { // something changed, copy seq, eval and return it epvector *s = new epvector; s->reserve(seq.size()); // copy parts of seq which are known not to have changed epvector::const_iterator cit2 = seq.begin(); while (cit2!=cit) { s->push_back(*cit2); ++cit2; } // copy first changed element s->push_back(combine_ex_with_coeff_to_pair(expanded_ex, cit2->coeff)); ++cit2; // copy rest while (cit2!=last) { s->push_back(combine_ex_with_coeff_to_pair(cit2->rest.expand(options), cit2->coeff)); ++cit2; } return s; } ++cit; } return 0; // signalling nothing has changed } /** Member-wise evaluate the expairs in this sequence. * * @see expairseq::eval() * @return pointer to epvector containing evaluated pairs or zero pointer, * if no members were changed. */ epvector * expairseq::evalchildren(int level) const { // returns a NULL pointer if nothing had to be evaluated // returns a pointer to a newly created epvector otherwise // (which has to be deleted somewhere else) if (level==1) return 0; if (level == -max_recursion_level) throw(std::runtime_error("max recursion level reached")); --level; epvector::const_iterator last = seq.end(); epvector::const_iterator cit = seq.begin(); while (cit!=last) { const ex &evaled_ex = cit->rest.eval(level); if (!are_ex_trivially_equal(cit->rest,evaled_ex)) { // something changed, copy seq, eval and return it epvector *s = new epvector; s->reserve(seq.size()); // copy parts of seq which are known not to have changed epvector::const_iterator cit2=seq.begin(); while (cit2!=cit) { s->push_back(*cit2); ++cit2; } // copy first changed element s->push_back(combine_ex_with_coeff_to_pair(evaled_ex, cit2->coeff)); ++cit2; // copy rest while (cit2!=last) { s->push_back(combine_ex_with_coeff_to_pair(cit2->rest.eval(level), cit2->coeff)); ++cit2; } return s; } ++cit; } return 0; // signalling nothing has changed } /** Member-wise substitute in this sequence. * * @see expairseq::subs() * @return pointer to epvector containing pairs after application of subs, * or NULL pointer if no members were changed. */ epvector * expairseq::subschildren(const exmap & m, unsigned options) const { // When any of the objects to be substituted is a product or power // we have to recombine the pairs because the numeric coefficients may // be part of the search pattern. if (!(options & (subs_options::pattern_is_product | subs_options::pattern_is_not_product))) { // Search the list of substitutions and cache our findings for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) { if (is_exactly_a(it->first) || is_exactly_a(it->first)) { options |= subs_options::pattern_is_product; break; } } if (!(options & subs_options::pattern_is_product)) options |= subs_options::pattern_is_not_product; } if (options & subs_options::pattern_is_product) { // Substitute in the recombined pairs epvector::const_iterator cit = seq.begin(), last = seq.end(); while (cit != last) { const ex &orig_ex = recombine_pair_to_ex(*cit); const ex &subsed_ex = orig_ex.subs(m, options); if (!are_ex_trivially_equal(orig_ex, subsed_ex)) { // Something changed, copy seq, subs and return it epvector *s = new epvector; s->reserve(seq.size()); // Copy parts of seq which are known not to have changed s->insert(s->begin(), seq.begin(), cit); // Copy first changed element s->push_back(split_ex_to_pair(subsed_ex)); ++cit; // Copy rest while (cit != last) { s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit).subs(m, options))); ++cit; } return s; } ++cit; } } else { // Substitute only in the "rest" part of the pairs epvector::const_iterator cit = seq.begin(), last = seq.end(); while (cit != last) { const ex &subsed_ex = cit->rest.subs(m, options); if (!are_ex_trivially_equal(cit->rest, subsed_ex)) { // Something changed, copy seq, subs and return it epvector *s = new epvector; s->reserve(seq.size()); // Copy parts of seq which are known not to have changed s->insert(s->begin(), seq.begin(), cit); // Copy first changed element s->push_back(combine_ex_with_coeff_to_pair(subsed_ex, cit->coeff)); ++cit; // Copy rest while (cit != last) { s->push_back(combine_ex_with_coeff_to_pair(cit->rest.subs(m, options), cit->coeff)); ++cit; } return s; } ++cit; } } // Nothing has changed return NULL; } ////////// // static member variables ////////// #if EXPAIRSEQ_USE_HASHTAB unsigned expairseq::maxhashtabsize = 0x4000000U; unsigned expairseq::minhashtabsize = 0x1000U; unsigned expairseq::hashtabfactor = 1; #endif // EXPAIRSEQ_USE_HASHTAB } // namespace GiNaC