/** @file expairseq.cpp * * Implementation of sequences of expression pairs. */ /* * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "expairseq.h" #include "lst.h" #include "archive.h" #include "debugmsg.h" #include "utils.h" #ifndef NO_NAMESPACE_GINAC namespace GiNaC { #endif // ndef NO_NAMESPACE_GINAC #ifdef EXPAIRSEQ_USE_HASHTAB #error "FIXME: expair_needs_further_processing not yet implemented for hashtabs, sorry. A.F." #endif // def EXPAIRSEQ_USE_HASHTAB GINAC_IMPLEMENT_REGISTERED_CLASS(expairseq, basic) ////////// // helper classes ////////// class epp_is_less { public: bool operator()(const epp & lh, const epp & rh) const { return (*lh).is_less(*rh); } }; ////////// // default constructor, destructor, copy constructor assignment operator and helpers ////////// // public expairseq::expairseq(const expairseq & other) { debugmsg("expairseq copy constructor",LOGLEVEL_CONSTRUCT); copy(other); } const expairseq & expairseq::operator=(const expairseq & other) { debugmsg("expairseq operator=",LOGLEVEL_ASSIGNMENT); if (this != &other) { destroy(true); copy(other); } return *this; } // protected void expairseq::copy(const expairseq & other) { inherited::copy(other); seq=other.seq; overall_coeff=other.overall_coeff; #ifdef EXPAIRSEQ_USE_HASHTAB // copy hashtab hashtabsize=other.hashtabsize; if (hashtabsize!=0) { hashmask=other.hashmask; hashtab.resize(hashtabsize); epvector::const_iterator osb=other.seq.begin(); for (unsigned i=0; isetflag(status_flags::dynallocated); } /** Archive the object. */ void expairseq::archive(archive_node &n) const { inherited::archive(n); epvector::const_iterator i = seq.begin(), iend = seq.end(); while (i != iend) { n.add_ex("rest", i->rest); n.add_ex("coeff", i->coeff); i++; } n.add_ex("overall_coeff", overall_coeff); } ////////// // functions overriding virtual functions from bases classes ////////// // public basic * expairseq::duplicate() const { debugmsg("expairseq duplicate",LOGLEVEL_DUPLICATE); return new expairseq(*this); } void expairseq::print(std::ostream & os, unsigned upper_precedence) const { debugmsg("expairseq print",LOGLEVEL_PRINT); os << "[["; printseq(os,',',precedence,upper_precedence); os << "]]"; } void expairseq::printraw(std::ostream & os) const { debugmsg("expairseq printraw",LOGLEVEL_PRINT); os << "expairseq("; for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { os << "("; (*cit).rest.printraw(os); os << ","; (*cit).coeff.printraw(os); os << "),"; } os << ")"; } void expairseq::printtree(std::ostream & os, unsigned indent) const { debugmsg("expairseq printtree",LOGLEVEL_PRINT); os << std::string(indent,' ') << "type=" << class_name() << ", hash=" << hashvalue << " (0x" << std::hex << hashvalue << std::dec << ")" << ", flags=" << flags << ", nops=" << nops() << std::endl; for (unsigned i=0; i0) { os << std::string(indent+delta_indent,' ') << "bin " << i << " with entries "; for (epplist::const_iterator it=hashtab[i].begin(); it!=hashtab[i].end(); ++it) { os << *it-seq.begin() << " "; this_bin_fill++; } os << std::endl; cum_fill += this_bin_fill; cum_fill_sq += this_bin_fill*this_bin_fill; } if (this_bin_fill0) fact *= k; double prob = pow(lambda,k)/fact*exp(-lambda); cum_prob += prob; os << std::string(indent+delta_indent,' ') << "bins with " << k << " entries: " << int(1000.0*count[k]/hashtabsize)/10.0 << "% (expected: " << int(prob*1000)/10.0 << ")" << std::endl; } os << std::string(indent+delta_indent,' ') << "bins with more entries: " << int(1000.0*count[MAXCOUNT]/hashtabsize)/10.0 << "% (expected: " << int((1-cum_prob)*1000)/10.0 << ")" << std::endl; os << std::string(indent+delta_indent,' ') << "variance: " << 1.0/hashtabsize*cum_fill_sq-(1.0/hashtabsize*cum_fill)*(1.0/hashtabsize*cum_fill) << std::endl; os << std::string(indent+delta_indent,' ') << "average fill: " << (1.0*cum_fill)/hashtabsize << " (should be equal to " << (1.0*seq.size())/hashtabsize << ")" << std::endl; #endif // def EXPAIRSEQ_USE_HASHTAB } bool expairseq::info(unsigned inf) const { return inherited::info(inf); } unsigned expairseq::nops() const { if (overall_coeff.is_equal(default_overall_coeff())) { return seq.size(); } return seq.size()+1; } ex expairseq::op(int i) const { if (unsigned(i)hold(); } return (new expairseq(vp,overall_coeff))->setflag(status_flags::dynallocated | status_flags::evaluated); } ex expairseq::evalf(int level) const { return thisexpairseq(evalfchildren(level),overall_coeff.evalf(level-1)); } ex expairseq::normal(lst &sym_lst, lst &repl_lst, int level) const { ex n = thisexpairseq(normalchildren(level),overall_coeff); return n.bp->basic::normal(sym_lst,repl_lst,level); } ex expairseq::subs(const lst & ls, const lst & lr) const { epvector * vp=subschildren(ls,lr); if (vp==0) { return *this; } return thisexpairseq(vp,overall_coeff); } // protected /** Implementation of ex::diff() for an expairseq. It differentiates all elements of the * sequence. * @see ex::diff */ ex expairseq::derivative(const symbol & s) const { return thisexpairseq(diffchildren(s),overall_coeff); } int expairseq::compare_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, expairseq)); const expairseq & o = static_cast(const_cast(other)); int cmpval; // compare number of elements if (seq.size() != o.seq.size()) { return (seq.size()0) { const epplist & eppl1=hashtab[i]; const epplist & eppl2=o.hashtab[i]; epplist::const_iterator it1=eppl1.begin(); epplist::const_iterator it2=eppl2.begin(); while (it1!=eppl1.end()) { cmpval=(*(*it1)).compare(*(*it2)); if (cmpval!=0) return cmpval; ++it1; ++it2; } } } return 0; // equal #endif // def EXPAIRSEQ_USE_HASHTAB } bool expairseq::is_equal_same_type(const basic & other) const { const expairseq & o=dynamic_cast(const_cast(other)); // compare number of elements if (seq.size() != o.seq.size()) return false; // compare overall_coeff if (!overall_coeff.is_equal(o.overall_coeff)) return false; #ifdef EXPAIRSEQ_USE_HASHTAB // compare number of elements in each hashtab entry if (hashtabsize!=o.hashtabsize) { cout << "this:" << std::endl; printtree(cout,0); cout << "other:" << std::endl; other.printtree(cout,0); } GINAC_ASSERT(hashtabsize==o.hashtabsize); if (hashtabsize==0) { #endif // def EXPAIRSEQ_USE_HASHTAB epvector::const_iterator cit1=seq.begin(); epvector::const_iterator cit2=o.seq.begin(); epvector::const_iterator last1=seq.end(); while (cit1!=last1) { if (!(*cit1).is_equal(*cit2)) return false; ++cit1; ++cit2; } return true; #ifdef EXPAIRSEQ_USE_HASHTAB } for (unsigned i=0; i0) { const epplist & eppl1=hashtab[i]; const epplist & eppl2=o.hashtab[i]; epplist::const_iterator it1=eppl1.begin(); epplist::const_iterator it2=eppl2.begin(); while (it1!=eppl1.end()) { if (!(*(*it1)).is_equal(*(*it2))) return false; ++it1; ++it2; } } } return true; #endif // def EXPAIRSEQ_USE_HASHTAB } unsigned expairseq::return_type(void) const { return return_types::noncommutative_composite; } unsigned expairseq::calchash(void) const { unsigned v=golden_ratio_hash(tinfo()); epvector::const_iterator last=seq.end(); for (epvector::const_iterator cit=seq.begin(); cit!=last; ++cit) { #ifndef EXPAIRSEQ_USE_HASHTAB v=rotate_left_31(v); // rotation would spoil commutativity #endif // ndef EXPAIRSEQ_USE_HASHTAB v ^= (*cit).rest.gethash(); } v ^= overall_coeff.gethash(); v=v & 0x7FFFFFFFU; // store calculated hash value only if object is already evaluated if (flags & status_flags::evaluated) { setflag(status_flags::hash_calculated); hashvalue=v; } return v; } ex expairseq::expand(unsigned options) const { epvector * vp = expandchildren(options); if (vp==0) { return *this; } return thisexpairseq(vp,overall_coeff); } ////////// // new virtual functions which can be overridden by derived classes ////////// // protected ex expairseq::thisexpairseq(const epvector & v, const ex & oc) const { return expairseq(v,oc); } ex expairseq::thisexpairseq(epvector * vp, const ex & oc) const { return expairseq(vp,oc); } void expairseq::printpair(std::ostream & os, const expair & p, unsigned upper_precedence) const { os << "[["; p.rest.bp->print(os,precedence); os << ","; p.coeff.bp->print(os,precedence); os << "]]"; } void expairseq::printseq(std::ostream & os, char delim, unsigned this_precedence, unsigned upper_precedence) const { if (this_precedence<=upper_precedence) os << "("; epvector::const_iterator it,it_last; it_last=seq.end(); --it_last; for (it=seq.begin(); it!=it_last; ++it) { printpair(os,*it,this_precedence); os << delim; } printpair(os,*it,this_precedence); if (!overall_coeff.is_equal(default_overall_coeff())) { os << delim << overall_coeff; } if (this_precedence<=upper_precedence) os << ")"; } expair expairseq::split_ex_to_pair(const ex & e) const { return expair(e,_ex1()); } expair expairseq::combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const { GINAC_ASSERT(is_ex_exactly_of_type(c,numeric)); return expair(e,c); } expair expairseq::combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const { GINAC_ASSERT(is_ex_exactly_of_type(p.coeff,numeric)); GINAC_ASSERT(is_ex_exactly_of_type(c,numeric)); return expair(p.rest,ex_to_numeric(p.coeff).mul_dyn(ex_to_numeric(c))); } ex expairseq::recombine_pair_to_ex(const expair & p) const { return lst(p.rest,p.coeff); } bool expairseq::expair_needs_further_processing(epp it) { return false; } ex expairseq::default_overall_coeff(void) const { return _ex0(); } void expairseq::combine_overall_coeff(const ex & c) { GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); GINAC_ASSERT(is_ex_exactly_of_type(c,numeric)); overall_coeff = ex_to_numeric(overall_coeff).add_dyn(ex_to_numeric(c)); } void expairseq::combine_overall_coeff(const ex & c1, const ex & c2) { GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric)); GINAC_ASSERT(is_ex_exactly_of_type(c1,numeric)); GINAC_ASSERT(is_ex_exactly_of_type(c2,numeric)); overall_coeff = ex_to_numeric(overall_coeff). add_dyn(ex_to_numeric(c1).mul(ex_to_numeric(c2))); } bool expairseq::can_make_flat(const expair & p) const { return true; } ////////// // non-virtual functions in this class ////////// void expairseq::construct_from_2_ex_via_exvector(const ex & lh, const ex & rh) { exvector v; v.reserve(2); v.push_back(lh); v.push_back(rh); construct_from_exvector(v); #ifdef EXPAIRSEQ_USE_HASHTAB GINAC_ASSERT((hashtabsize==0)||(hashtabsize>=minhashtabsize)); GINAC_ASSERT(hashtabsize==calc_hashtabsize(seq.size())); #endif // def EXPAIRSEQ_USE_HASHTAB } void expairseq::construct_from_2_ex(const ex & lh, const ex & rh) { if (lh.bp->tinfo()==tinfo()) { if (rh.bp->tinfo()==tinfo()) { #ifdef EXPAIRSEQ_USE_HASHTAB unsigned totalsize = ex_to_expairseq(lh).seq.size() + ex_to_expairseq(rh).seq.size(); if (calc_hashtabsize(totalsize)!=0) { construct_from_2_ex_via_exvector(lh,rh); } else { #endif // def EXPAIRSEQ_USE_HASHTAB construct_from_2_expairseq(ex_to_expairseq(lh), ex_to_expairseq(rh)); #ifdef EXPAIRSEQ_USE_HASHTAB } #endif // def EXPAIRSEQ_USE_HASHTAB return; } else { #ifdef EXPAIRSEQ_USE_HASHTAB unsigned totalsize=ex_to_expairseq(lh).seq.size()+1; if (calc_hashtabsize(totalsize) != 0) { construct_from_2_ex_via_exvector(lh, rh); } else { #endif // def EXPAIRSEQ_USE_HASHTAB construct_from_expairseq_ex(ex_to_expairseq(lh), rh); #ifdef EXPAIRSEQ_USE_HASHTAB } #endif // def EXPAIRSEQ_USE_HASHTAB return; } } else if (rh.bp->tinfo()==tinfo()) { #ifdef EXPAIRSEQ_USE_HASHTAB unsigned totalsize=ex_to_expairseq(rh).seq.size()+1; if (calc_hashtabsize(totalsize)!=0) { construct_from_2_ex_via_exvector(lh,rh); } else { #endif // def EXPAIRSEQ_USE_HASHTAB construct_from_expairseq_ex(ex_to_expairseq(rh),lh); #ifdef EXPAIRSEQ_USE_HASHTAB } #endif // def EXPAIRSEQ_USE_HASHTAB return; } #ifdef EXPAIRSEQ_USE_HASHTAB if (calc_hashtabsize(2)!=0) { construct_from_2_ex_via_exvector(lh,rh); return; } hashtabsize=0; #endif // def EXPAIRSEQ_USE_HASHTAB if (is_ex_exactly_of_type(lh,numeric)) { if (is_ex_exactly_of_type(rh,numeric)) { combine_overall_coeff(lh); combine_overall_coeff(rh); } else { combine_overall_coeff(lh); seq.push_back(split_ex_to_pair(rh)); } } else { if (is_ex_exactly_of_type(rh,numeric)) { combine_overall_coeff(rh); seq.push_back(split_ex_to_pair(lh)); } else { expair p1=split_ex_to_pair(lh); expair p2=split_ex_to_pair(rh); int cmpval=p1.rest.compare(p2.rest); if (cmpval==0) { p1.coeff=ex_to_numeric(p1.coeff).add_dyn(ex_to_numeric(p2.coeff)); if (!ex_to_numeric(p1.coeff).is_zero()) { // no further processing is necessary, since this // one element will usually be recombined in eval() seq.push_back(p1); } } else { seq.reserve(2); if (cmpval<0) { seq.push_back(p1); seq.push_back(p2); } else { seq.push_back(p2); seq.push_back(p1); } } } } } void expairseq::construct_from_2_expairseq(const expairseq & s1, const expairseq & s2) { combine_overall_coeff(s1.overall_coeff); combine_overall_coeff(s2.overall_coeff); epvector::const_iterator first1=s1.seq.begin(); epvector::const_iterator last1=s1.seq.end(); epvector::const_iterator first2=s2.seq.begin(); epvector::const_iterator last2=s2.seq.end(); seq.reserve(s1.seq.size()+s2.seq.size()); bool needs_further_processing=false; while (first1!=last1 && first2!=last2) { int cmpval=(*first1).rest.compare((*first2).rest); if (cmpval==0) { // combine terms const numeric & newcoeff = ex_to_numeric((*first1).coeff). add(ex_to_numeric((*first2).coeff)); if (!newcoeff.is_zero()) { seq.push_back(expair((*first1).rest,newcoeff)); if (expair_needs_further_processing(seq.end()-1)) { needs_further_processing = true; } } ++first1; ++first2; } else if (cmpval<0) { seq.push_back(*first1); ++first1; } else { seq.push_back(*first2); ++first2; } } while (first1!=last1) { seq.push_back(*first1); ++first1; } while (first2!=last2) { seq.push_back(*first2); ++first2; } if (needs_further_processing) { epvector v=seq; seq.clear(); construct_from_epvector(v); } } void expairseq::construct_from_expairseq_ex(const expairseq & s, const ex & e) { combine_overall_coeff(s.overall_coeff); if (is_ex_exactly_of_type(e,numeric)) { combine_overall_coeff(e); seq=s.seq; return; } epvector::const_iterator first=s.seq.begin(); epvector::const_iterator last=s.seq.end(); expair p=split_ex_to_pair(e); seq.reserve(s.seq.size()+1); bool p_pushed=0; bool needs_further_processing=false; // merge p into s.seq while (first!=last) { int cmpval=(*first).rest.compare(p.rest); if (cmpval==0) { // combine terms const numeric & newcoeff = ex_to_numeric((*first).coeff). add(ex_to_numeric(p.coeff)); if (!newcoeff.is_zero()) { seq.push_back(expair((*first).rest,newcoeff)); if (expair_needs_further_processing(seq.end()-1)) { needs_further_processing = true; } } ++first; p_pushed=1; break; } else if (cmpval<0) { seq.push_back(*first); ++first; } else { seq.push_back(p); p_pushed=1; break; } } if (p_pushed) { // while loop exited because p was pushed, now push rest of s.seq while (first!=last) { seq.push_back(*first); ++first; } } else { // while loop exited because s.seq was pushed, now push p seq.push_back(p); } if (needs_further_processing) { epvector v=seq; seq.clear(); construct_from_epvector(v); } } void expairseq::construct_from_exvector(const exvector & v) { // simplifications: +(a,+(b,c),d) -> +(a,b,c,d) (associativity) // +(d,b,c,a) -> +(a,b,c,d) (canonicalization) // +(...,x,*(x,c1),*(x,c2)) -> +(...,*(x,1+c1+c2)) (c1, c2 numeric()) // (same for (+,*) -> (*,^) make_flat(v); #ifdef EXPAIRSEQ_USE_HASHTAB combine_same_terms(); #else canonicalize(); combine_same_terms_sorted_seq(); #endif // def EXPAIRSEQ_USE_HASHTAB } void expairseq::construct_from_epvector(const epvector & v) { // simplifications: +(a,+(b,c),d) -> +(a,b,c,d) (associativity) // +(d,b,c,a) -> +(a,b,c,d) (canonicalization) // +(...,x,*(x,c1),*(x,c2)) -> +(...,*(x,1+c1+c2)) (c1, c2 numeric()) // (same for (+,*) -> (*,^) make_flat(v); #ifdef EXPAIRSEQ_USE_HASHTAB combine_same_terms(); #else canonicalize(); combine_same_terms_sorted_seq(); #endif // def EXPAIRSEQ_USE_HASHTAB } void expairseq::make_flat(const exvector & v) { exvector::const_iterator cit, citend = v.end(); // count number of operands which are of same expairseq derived type // and their cumulative number of operands int nexpairseqs=0; int noperands=0; cit=v.begin(); while (cit!=citend) { if (cit->bp->tinfo()==tinfo()) { nexpairseqs++; noperands+=ex_to_expairseq(*cit).seq.size(); } ++cit; } // reserve seq and coeffseq which will hold all operands seq.reserve(v.size()+noperands-nexpairseqs); // copy elements and split off numerical part cit=v.begin(); while (cit!=citend) { if (cit->bp->tinfo()==tinfo()) { const expairseq & subseqref=ex_to_expairseq(*cit); combine_overall_coeff(subseqref.overall_coeff); epvector::const_iterator cit_s=subseqref.seq.begin(); while (cit_s!=subseqref.seq.end()) { seq.push_back(*cit_s); ++cit_s; } } else { if (is_ex_exactly_of_type(*cit,numeric)) { combine_overall_coeff(*cit); } else { seq.push_back(split_ex_to_pair(*cit)); } } ++cit; } /* cout << "after make flat" << std::endl; for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { (*cit).printraw(cout); } cout << std::endl; */ } void expairseq::make_flat(const epvector & v) { epvector::const_iterator cit, citend = v.end(); // count number of operands which are of same expairseq derived type // and their cumulative number of operands int nexpairseqs=0; int noperands=0; cit = v.begin(); while (cit!=citend) { if (cit->rest.bp->tinfo()==tinfo()) { nexpairseqs++; noperands += ex_to_expairseq((*cit).rest).seq.size(); } ++cit; } // reserve seq and coeffseq which will hold all operands seq.reserve(v.size()+noperands-nexpairseqs); // copy elements and split off numerical part cit = v.begin(); while (cit!=citend) { if ((cit->rest.bp->tinfo()==tinfo())&&can_make_flat(*cit)) { const expairseq & subseqref=ex_to_expairseq((*cit).rest); combine_overall_coeff(ex_to_numeric(subseqref.overall_coeff), ex_to_numeric((*cit).coeff)); epvector::const_iterator cit_s=subseqref.seq.begin(); while (cit_s!=subseqref.seq.end()) { seq.push_back(expair((*cit_s).rest, ex_to_numeric((*cit_s).coeff).mul_dyn(ex_to_numeric((*cit).coeff)))); //seq.push_back(combine_pair_with_coeff_to_pair(*cit_s, // (*cit).coeff)); ++cit_s; } } else { if ((*cit).is_numeric_with_coeff_1()) { combine_overall_coeff((*cit).rest); //if (is_ex_exactly_of_type((*cit).rest,numeric)) { // combine_overall_coeff(recombine_pair_to_ex(*cit)); } else { seq.push_back(*cit); } } ++cit; } } epvector * expairseq::bubblesort(epvector::iterator itbegin, epvector::iterator itend) { unsigned n=itend-itbegin; epvector * sp=new epvector; sp->reserve(n); epvector::iterator last=itend-1; for (epvector::iterator it1=itbegin; it1!=last; ++it1) { for (epvector::iterator it2=it1+1; it2!=itend; ++it2) { if ((*it2).rest.compare((*it1).rest)<0) { iter_swap(it1,it2); } } sp->push_back(*it1); } sp->push_back(*last); return sp; } epvector * expairseq::mergesort(epvector::iterator itbegin, epvector::iterator itend) { unsigned n=itend-itbegin; /* if (n==1) { epvector * sp=new epvector; sp->push_back(*itbegin); return sp; } */ if (n<16) return bubblesort(itbegin, itend); unsigned m=n/2; epvector * s1p=mergesort(itbegin, itbegin+m); epvector * s2p=mergesort(itbegin+m, itend); epvector * sp=new epvector; sp->reserve(s1p->size()+s2p->size()); epvector::iterator first1=s1p->begin(); epvector::iterator last1=s1p->end(); epvector::iterator first2=s2p->begin(); epvector::iterator last2=s2p->end(); while (first1 != last1 && first2 != last2) { if ((*first1).rest.compare((*first2).rest)<0) { sp->push_back(*first1); ++first1; } else { sp->push_back(*first2); ++first2; } } if (first1 != last1) { while (first1 != last1) { sp->push_back(*first1); ++first1; } } else { while (first2 != last2) { sp->push_back(*first2); ++first2; } } delete s1p; delete s2p; return sp; } void expairseq::canonicalize(void) { // canonicalize sort(seq.begin(),seq.end(),expair_is_less()); /* sort(seq.begin(),seq.end(),expair_is_less_old()); if (seq.size()>1) { if (is_ex_exactly_of_type((*(seq.begin())).rest,numeric)) { sort(seq.begin(),seq.end(),expair_is_less()); } else { epvector::iterator last_numeric=seq.end(); do { last_numeric--; } while (is_ex_exactly_of_type((*last_numeric).rest,numeric)); last_numeric++; sort(last_numeric,seq.end(),expair_is_less()); } } */ /* epvector * sorted_seqp=mergesort(seq.begin(),seq.end()); epvector::iterator last=sorted_seqp->end(); epvector::iterator it2=seq.begin(); for (epvector::iterator it1=sorted_seqp->begin(); it1!=last; ++it1, ++it2) { iter_swap(it1,it2); } delete sorted_seqp; */ /* cout << "after canonicalize" << std::endl; for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { (*cit).printraw(cout); } cout << std::endl; cout.flush(); */ } void expairseq::combine_same_terms_sorted_seq(void) { bool needs_further_processing=false; // combine same terms, drop term with coeff 0 if (seq.size()>1) { epvector::iterator itin1=seq.begin(); epvector::iterator itin2=itin1+1; epvector::iterator itout=itin1; epvector::iterator last=seq.end(); // must_copy will be set to true the first time some combination is possible // from then on the sequence has changed and must be compacted bool must_copy=false; while (itin2!=last) { if ((*itin1).rest.compare((*itin2).rest)==0) { (*itin1).coeff = ex_to_numeric((*itin1).coeff). add_dyn(ex_to_numeric((*itin2).coeff)); if (expair_needs_further_processing(itin1)) { needs_further_processing = true; } must_copy=true; } else { if (!ex_to_numeric((*itin1).coeff).is_zero()) { if (must_copy) { *itout=*itin1; } ++itout; } itin1=itin2; } ++itin2; } if (!ex_to_numeric((*itin1).coeff).is_zero()) { if (must_copy) { *itout=*itin1; } ++itout; } if (itout!=last) { seq.erase(itout,last); } } /* cout << "after combine" << std::endl; for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { (*cit).printraw(cout); } cout << std::endl; cout.flush(); */ if (needs_further_processing) { epvector v=seq; seq.clear(); construct_from_epvector(v); } } #ifdef EXPAIRSEQ_USE_HASHTAB unsigned expairseq::calc_hashtabsize(unsigned sz) const { unsigned size; unsigned nearest_power_of_2 = 1 << log2(sz); // if (nearest_power_of_2 < maxhashtabsize/hashtabfactor) { // size=nearest_power_of_2*hashtabfactor; size=nearest_power_of_2/hashtabfactor; if (size=0); GINAC_ASSERT((hashindex & touched, unsigned & number_of_zeroes) { epp current=seq.begin(); while (current!=first_numeric) { if (is_ex_exactly_of_type((*current).rest,numeric)) { --first_numeric; iter_swap(current,first_numeric); } else { // calculate hashindex unsigned currenthashindex=calc_hashindex((*current).rest); // test if there is already a matching expair in the hashtab-list epplist & eppl=hashtab[currenthashindex]; epplist::iterator epplit=eppl.begin(); while (epplit!=eppl.end()) { if ((*current).rest.is_equal((*(*epplit)).rest)) break; ++epplit; } if (epplit==eppl.end()) { // no matching expair found, append this to end of list sorted_insert(eppl,current); ++current; } else { // epplit points to a matching expair, combine it with current (*(*epplit)).coeff = ex_to_numeric((*(*epplit)).coeff). add_dyn(ex_to_numeric((*current).coeff)); // move obsolete current expair to end by swapping with last_non_zero element // if this was a numeric, it is swapped with the expair before first_numeric iter_swap(current,last_non_zero); --first_numeric; if (first_numeric!=last_non_zero) iter_swap(first_numeric,current); --last_non_zero; ++number_of_zeroes; // test if combined term has coeff 0 and can be removed is done later touched[(*epplit)-seq.begin()]=true; } } } } void expairseq::drop_coeff_0_terms(epvector::iterator & first_numeric, epvector::iterator & last_non_zero, vector & touched, unsigned & number_of_zeroes) { // move terms with coeff 0 to end and remove them from hashtab // check only those elements which have been touched epp current=seq.begin(); unsigned i=0; while (current!=first_numeric) { if (!touched[i]) { ++current; ++i; } else if (!ex_to_numeric((*current).coeff).is_equal(_num0())) { ++current; ++i; } else { remove_hashtab_entry(current); // move element to the end, unless it is already at the end if (current!=last_non_zero) { iter_swap(current,last_non_zero); --first_numeric; bool numeric_swapped=first_numeric!=last_non_zero; if (numeric_swapped) iter_swap(first_numeric,current); epvector::iterator changed_entry; if (numeric_swapped) { changed_entry=first_numeric; } else { changed_entry=last_non_zero; } --last_non_zero; ++number_of_zeroes; if (first_numeric!=current) { // change entry in hashtab which referred to first_numeric or last_non_zero to current move_hashtab_entry(changed_entry,current); touched[current-seq.begin()]=touched[changed_entry-seq.begin()]; } } else { --first_numeric; --last_non_zero; ++number_of_zeroes; } } } GINAC_ASSERT(i==current-seq.begin()); } bool expairseq::has_coeff_0(void) const { for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { if ((*cit).coeff.is_equal(_ex0())) { return true; } } return false; } void expairseq::add_numerics_to_hashtab(epvector::iterator first_numeric, epvector::const_iterator last_non_zero) { if (first_numeric==seq.end()) return; // no numerics epvector::iterator current=first_numeric; epvector::const_iterator last=last_non_zero+1; while (current!=last) { sorted_insert(hashtab[hashmask],current); ++current; } } void expairseq::combine_same_terms(void) { // combine same terms, drop term with coeff 0, move numerics to end // calculate size of hashtab hashtabsize=calc_hashtabsize(seq.size()); // hashtabsize is a power of 2 hashmask=hashtabsize-1; // allocate hashtab hashtab.clear(); hashtab.resize(hashtabsize); if (hashtabsize==0) { canonicalize(); combine_same_terms_sorted_seq(); GINAC_ASSERT(!has_coeff_0()); return; } // iterate through seq, move numerics to end, // fill hashtab and combine same terms epvector::iterator first_numeric=seq.end(); epvector::iterator last_non_zero=seq.end()-1; vector touched; touched.reserve(seq.size()); for (unsigned i=0; i0) return 1; // not canoncalized #endif // def EXPAIRSEQ_USE_HASHTAB epvector::const_iterator it = seq.begin(); epvector::const_iterator it_last = it; for (++it; it!=seq.end(); it_last=it, ++it) { if (!((*it_last).is_less(*it)||(*it_last).is_equal(*it))) { if (!is_ex_exactly_of_type((*it_last).rest,numeric)|| !is_ex_exactly_of_type((*it).rest,numeric)) { // double test makes it easier to set a breakpoint... if (!is_ex_exactly_of_type((*it_last).rest,numeric)|| !is_ex_exactly_of_type((*it).rest,numeric)) { printpair(std::clog,*it_last,0); std::clog << ">"; printpair(std::clog,*it,0); std::clog << "\n"; std::clog << "pair1:" << std::endl; (*it_last).rest.printtree(std::clog); (*it_last).coeff.printtree(std::clog); std::clog << "pair2:" << std::endl; (*it).rest.printtree(std::clog); (*it).coeff.printtree(std::clog); return 0; } } } } return 1; } epvector * expairseq::expandchildren(unsigned options) const { epvector::const_iterator last = seq.end(); epvector::const_iterator cit = seq.begin(); while (cit!=last) { const ex & expanded_ex=(*cit).rest.expand(options); if (!are_ex_trivially_equal((*cit).rest,expanded_ex)) { // something changed, copy seq, eval and return it epvector *s=new epvector; s->reserve(seq.size()); // copy parts of seq which are known not to have changed epvector::const_iterator cit2 = seq.begin(); while (cit2!=cit) { s->push_back(*cit2); ++cit2; } // copy first changed element s->push_back(combine_ex_with_coeff_to_pair(expanded_ex, (*cit2).coeff)); ++cit2; // copy rest while (cit2!=last) { s->push_back(combine_ex_with_coeff_to_pair((*cit2).rest.expand(options), (*cit2).coeff)); ++cit2; } return s; } ++cit; } return 0; // nothing has changed } epvector * expairseq::evalchildren(int level) const { // returns a NULL pointer if nothing had to be evaluated // returns a pointer to a newly created epvector otherwise // (which has to be deleted somewhere else) if (level==1) { return 0; } if (level == -max_recursion_level) { throw(std::runtime_error("max recursion level reached")); } --level; epvector::const_iterator last=seq.end(); epvector::const_iterator cit=seq.begin(); while (cit!=last) { const ex & evaled_ex=(*cit).rest.eval(level); if (!are_ex_trivially_equal((*cit).rest,evaled_ex)) { // something changed, copy seq, eval and return it epvector *s = new epvector; s->reserve(seq.size()); // copy parts of seq which are known not to have changed epvector::const_iterator cit2=seq.begin(); while (cit2!=cit) { s->push_back(*cit2); ++cit2; } // copy first changed element s->push_back(combine_ex_with_coeff_to_pair(evaled_ex, (*cit2).coeff)); ++cit2; // copy rest while (cit2!=last) { s->push_back(combine_ex_with_coeff_to_pair((*cit2).rest.eval(level), (*cit2).coeff)); ++cit2; } return s; } ++cit; } return 0; // nothing has changed } epvector expairseq::evalfchildren(int level) const { if (level==1) return seq; if (level==-max_recursion_level) throw(std::runtime_error("max recursion level reached")); epvector s; s.reserve(seq.size()); --level; for (epvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { s.push_back(combine_ex_with_coeff_to_pair((*it).rest.evalf(level), (*it).coeff.evalf(level))); } return s; } epvector expairseq::normalchildren(int level) const { if (level==1) return seq; if (level == -max_recursion_level) throw(std::runtime_error("max recursion level reached")); epvector s; s.reserve(seq.size()); --level; for (epvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { s.push_back(combine_ex_with_coeff_to_pair((*it).rest.normal(level), (*it).coeff)); } return s; } epvector expairseq::diffchildren(const symbol & y) const { epvector s; s.reserve(seq.size()); for (epvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) { s.push_back(combine_ex_with_coeff_to_pair((*it).rest.diff(y), (*it).coeff)); } return s; } epvector * expairseq::subschildren(const lst & ls, const lst & lr) const { // returns a NULL pointer if nothing had to be substituted // returns a pointer to a newly created epvector otherwise // (which has to be deleted somewhere else) GINAC_ASSERT(ls.nops()==lr.nops()); epvector::const_iterator last=seq.end(); epvector::const_iterator cit=seq.begin(); while (cit!=last) { const ex & subsed_ex=(*cit).rest.subs(ls,lr); if (!are_ex_trivially_equal((*cit).rest,subsed_ex)) { // something changed, copy seq, subs and return it epvector *s=new epvector; s->reserve(seq.size()); // copy parts of seq which are known not to have changed epvector::const_iterator cit2=seq.begin(); while (cit2!=cit) { s->push_back(*cit2); ++cit2; } // copy first changed element s->push_back(combine_ex_with_coeff_to_pair(subsed_ex, (*cit2).coeff)); ++cit2; // copy rest while (cit2!=last) { s->push_back(combine_ex_with_coeff_to_pair((*cit2).rest.subs(ls,lr), (*cit2).coeff)); ++cit2; } return s; } ++cit; } return 0; // nothing has changed } ////////// // static member variables ////////// // protected unsigned expairseq::precedence=10; #ifdef EXPAIRSEQ_USE_HASHTAB unsigned expairseq::maxhashtabsize=0x4000000U; unsigned expairseq::minhashtabsize=0x1000U; unsigned expairseq::hashtabfactor=1; #endif // def EXPAIRSEQ_USE_HASHTAB ////////// // global constants ////////// const expairseq some_expairseq; const std::type_info & typeid_expairseq = typeid(some_expairseq); #ifndef NO_NAMESPACE_GINAC } // namespace GiNaC #endif // ndef NO_NAMESPACE_GINAC