/** @file expairseq.cpp * * Implementation of sequences of expression pairs. */ /* * GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "expairseq.h" #include "lst.h" #include "add.h" #include "mul.h" #include "power.h" #include "relational.h" #include "wildcard.h" #include "archive.h" #include "operators.h" #include "utils.h" #include "hash_seed.h" #include "indexed.h" #include #include #include #include #include namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(expairseq, basic, print_func(&expairseq::do_print). print_func(&expairseq::do_print_tree)) ////////// // helper classes ////////// class epp_is_less { public: bool operator()(const epp &lh, const epp &rh) const { return (*lh).is_less(*rh); } }; ////////// // default constructor ////////// // public expairseq::expairseq() {} // protected ////////// // other constructors ////////// expairseq::expairseq(const ex &lh, const ex &rh) { construct_from_2_ex(lh,rh); GINAC_ASSERT(is_canonical()); } expairseq::expairseq(const exvector &v) { construct_from_exvector(v); GINAC_ASSERT(is_canonical()); } expairseq::expairseq(const epvector &v, const ex &oc, bool do_index_renaming) : overall_coeff(oc) { GINAC_ASSERT(is_a(oc)); construct_from_epvector(v, do_index_renaming); GINAC_ASSERT(is_canonical()); } expairseq::expairseq(epvector && vp, const ex &oc, bool do_index_renaming) : overall_coeff(oc) { GINAC_ASSERT(is_a(oc)); construct_from_epvector(std::move(vp), do_index_renaming); GINAC_ASSERT(is_canonical()); } ////////// // archiving ////////// void expairseq::read_archive(const archive_node &n, lst &sym_lst) { inherited::read_archive(n, sym_lst); auto first = n.find_first("rest"); auto last = n.find_last("coeff"); ++last; seq.reserve((last-first)/2); for (auto loc = first; loc < last;) { ex rest; ex coeff; n.find_ex_by_loc(loc++, rest, sym_lst); n.find_ex_by_loc(loc++, coeff, sym_lst); seq.push_back(expair(rest, coeff)); } n.find_ex("overall_coeff", overall_coeff, sym_lst); canonicalize(); GINAC_ASSERT(is_canonical()); } void expairseq::archive(archive_node &n) const { inherited::archive(n); for (auto & i : seq) { n.add_ex("rest", i.rest); n.add_ex("coeff", i.coeff); } n.add_ex("overall_coeff", overall_coeff); } ////////// // functions overriding virtual functions from base classes ////////// // public void expairseq::do_print(const print_context & c, unsigned level) const { c.s << "[["; printseq(c, ',', precedence(), level); c.s << "]]"; } void expairseq::do_print_tree(const print_tree & c, unsigned level) const { c.s << std::string(level, ' ') << class_name() << " @" << this << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << ", nops=" << nops() << std::endl; size_t num = seq.size(); for (size_t i=0; isetflag(status_flags::has_indices); this->clearflag(status_flags::has_no_indices); return true; } } this->clearflag(status_flags::has_indices); this->setflag(status_flags::has_no_indices); return false; } } return inherited::info(inf); } size_t expairseq::nops() const { if (overall_coeff.is_equal(default_overall_coeff())) return seq.size(); else return seq.size()+1; } ex expairseq::op(size_t i) const { if (i < seq.size()) return recombine_pair_to_ex(seq[i]); GINAC_ASSERT(!overall_coeff.is_equal(default_overall_coeff())); return overall_coeff; } ex expairseq::map(map_function &f) const { epvector v; v.reserve(seq.size()+1); for (auto & it : seq) v.push_back(split_ex_to_pair(f(recombine_pair_to_ex(it)))); if (overall_coeff.is_equal(default_overall_coeff())) return thisexpairseq(std::move(v), default_overall_coeff(), true); else { ex newcoeff = f(overall_coeff); if(is_a(newcoeff)) return thisexpairseq(std::move(v), newcoeff, true); else { v.push_back(split_ex_to_pair(newcoeff)); return thisexpairseq(std::move(v), default_overall_coeff(), true); } } } /** Perform coefficient-wise automatic term rewriting rules in this class. */ ex expairseq::eval(int level) const { if ((level==1) && (flags &status_flags::evaluated)) return *this; epvector evaled = evalchildren(level); if (!evaled.empty()) return (new expairseq(std::move(evaled), overall_coeff))->setflag(status_flags::dynallocated | status_flags::evaluated); else return this->hold(); } epvector* conjugateepvector(const epvector&epv) { epvector *newepv = nullptr; for (auto i=epv.begin(); i!=epv.end(); ++i) { if (newepv) { newepv->push_back(i->conjugate()); continue; } expair x = i->conjugate(); if (x.is_equal(*i)) { continue; } newepv = new epvector; newepv->reserve(epv.size()); for (epvector::const_iterator j=epv.begin(); j!=i; ++j) { newepv->push_back(*j); } newepv->push_back(x); } return newepv; } ex expairseq::conjugate() const { std::unique_ptr newepv(conjugateepvector(seq)); ex x = overall_coeff.conjugate(); if (newepv) { return thisexpairseq(std::move(*newepv), x); } if (are_ex_trivially_equal(x, overall_coeff)) { return *this; } return thisexpairseq(seq, x); } bool expairseq::match(const ex & pattern, exmap & repl_lst) const { // This differs from basic::match() because we want "a+b+c+d" to // match "d+*+b" with "*" being "a+c", and we want to honor commutativity if (typeid(*this) == typeid(ex_to(pattern))) { // Check whether global wildcard (one that matches the "rest of the // expression", like "*" above) is present bool has_global_wildcard = false; ex global_wildcard; for (size_t i=0; i(pattern.op(i))) { has_global_wildcard = true; global_wildcard = pattern.op(i); break; } } // Even if the expression does not match the pattern, some of // its subexpressions could match it. For example, x^5*y^(-1) // does not match the pattern $0^5, but its subexpression x^5 // does. So, save repl_lst in order to not add bogus entries. exmap tmp_repl = repl_lst; // Unfortunately, this is an O(N^2) operation because we can't // sort the pattern in a useful way... // Chop into terms exvector ops; ops.reserve(nops()); for (size_t i=0; imatch(p, tmp_repl)) { ops.erase(it); goto found; } ++it; } return false; // no match found found: ; } if (has_global_wildcard) { // Assign all the remaining terms to the global wildcard (unless // it has already been matched before, in which case the matches // must be equal) size_t num = ops.size(); epvector vp; vp.reserve(num); for (size_t i=0; i(thisexpairseq(std::move(subsed), overall_coeff, (options & subs_options::no_index_renaming) == 0)); else if ((options & subs_options::algebraic) && is_exactly_a(*this)) return static_cast(this)->algebraic_subs_mul(m, options); else return subs_one_level(m, options); } // protected int expairseq::compare_same_type(const basic &other) const { GINAC_ASSERT(is_a(other)); const expairseq &o = static_cast(other); int cmpval; // compare number of elements if (seq.size() != o.seq.size()) return (seq.size()(other); // compare number of elements if (seq.size()!=o.seq.size()) return false; // compare overall_coeff if (!overall_coeff.is_equal(o.overall_coeff)) return false; auto cit2 = o.seq.begin(); for (auto & cit1 : seq) { if (!cit1.is_equal(*cit2)) return false; ++cit2; } return true; } unsigned expairseq::return_type() const { return return_types::noncommutative_composite; } unsigned expairseq::calchash() const { unsigned v = make_hash_seed(typeid(*this)); for (auto & i : seq) { v ^= i.rest.gethash(); v = rotate_left(v); v ^= i.coeff.gethash(); } v ^= overall_coeff.gethash(); // store calculated hash value only if object is already evaluated if (flags &status_flags::evaluated) { setflag(status_flags::hash_calculated); hashvalue = v; } return v; } ex expairseq::expand(unsigned options) const { epvector expanded = expandchildren(options); if (!expanded.empty()) { return thisexpairseq(std::move(expanded), overall_coeff); } return (options == 0) ? setflag(status_flags::expanded) : *this; } ////////// // new virtual functions which can be overridden by derived classes ////////// // protected /** Create an object of this type. * This method works similar to a constructor. It is useful because expairseq * has (at least) two possible different semantics but we want to inherit * methods thus avoiding code duplication. Sometimes a method in expairseq * has to create a new one of the same semantics, which cannot be done by a * ctor because the name (add, mul,...) is unknown on the expairseq level. In * order for this trick to work a derived class must of course override this * definition. */ ex expairseq::thisexpairseq(const epvector &v, const ex &oc, bool do_index_renaming) const { return expairseq(v, oc, do_index_renaming); } ex expairseq::thisexpairseq(epvector && vp, const ex &oc, bool do_index_renaming) const { return expairseq(std::move(vp), oc, do_index_renaming); } void expairseq::printpair(const print_context & c, const expair & p, unsigned upper_precedence) const { c.s << "[["; p.rest.print(c, precedence()); c.s << ","; p.coeff.print(c, precedence()); c.s << "]]"; } void expairseq::printseq(const print_context & c, char delim, unsigned this_precedence, unsigned upper_precedence) const { if (this_precedence <= upper_precedence) c.s << "("; auto it = seq.begin(), it_last = seq.end() - 1; for (; it!=it_last; ++it) { printpair(c, *it, this_precedence); c.s << delim; } printpair(c, *it, this_precedence); if (!overall_coeff.is_equal(default_overall_coeff())) { c.s << delim; overall_coeff.print(c, this_precedence); } if (this_precedence <= upper_precedence) c.s << ")"; } /** Form an expair from an ex, using the corresponding semantics. * @see expairseq::recombine_pair_to_ex() */ expair expairseq::split_ex_to_pair(const ex &e) const { return expair(e,_ex1); } expair expairseq::combine_ex_with_coeff_to_pair(const ex &e, const ex &c) const { GINAC_ASSERT(is_exactly_a(c)); return expair(e,c); } expair expairseq::combine_pair_with_coeff_to_pair(const expair &p, const ex &c) const { GINAC_ASSERT(is_exactly_a(p.coeff)); GINAC_ASSERT(is_exactly_a(c)); return expair(p.rest,ex_to(p.coeff).mul_dyn(ex_to(c))); } /** Form an ex out of an expair, using the corresponding semantics. * @see expairseq::split_ex_to_pair() */ ex expairseq::recombine_pair_to_ex(const expair &p) const { return lst(p.rest,p.coeff); } bool expairseq::expair_needs_further_processing(epp it) { return false; } ex expairseq::default_overall_coeff() const { return _ex0; } void expairseq::combine_overall_coeff(const ex &c) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c)); overall_coeff = ex_to(overall_coeff).add_dyn(ex_to(c)); } void expairseq::combine_overall_coeff(const ex &c1, const ex &c2) { GINAC_ASSERT(is_exactly_a(overall_coeff)); GINAC_ASSERT(is_exactly_a(c1)); GINAC_ASSERT(is_exactly_a(c2)); overall_coeff = ex_to(overall_coeff). add_dyn(ex_to(c1).mul(ex_to(c2))); } bool expairseq::can_make_flat(const expair &p) const { return true; } ////////// // non-virtual functions in this class ////////// void expairseq::construct_from_2_ex_via_exvector(const ex &lh, const ex &rh) { exvector v; v.reserve(2); v.push_back(lh); v.push_back(rh); construct_from_exvector(v); } void expairseq::construct_from_2_ex(const ex &lh, const ex &rh) { if (typeid(ex_to(lh)) == typeid(*this)) { if (typeid(ex_to(rh)) == typeid(*this)) { if (is_a(lh) && lh.info(info_flags::has_indices) && rh.info(info_flags::has_indices)) { ex newrh=rename_dummy_indices_uniquely(lh, rh); construct_from_2_expairseq(ex_to(lh), ex_to(newrh)); } else construct_from_2_expairseq(ex_to(lh), ex_to(rh)); return; } else { construct_from_expairseq_ex(ex_to(lh), rh); return; } } else if (typeid(ex_to(rh)) == typeid(*this)) { construct_from_expairseq_ex(ex_to(rh),lh); return; } if (is_exactly_a(lh)) { if (is_exactly_a(rh)) { combine_overall_coeff(lh); combine_overall_coeff(rh); } else { combine_overall_coeff(lh); seq.push_back(split_ex_to_pair(rh)); } } else { if (is_exactly_a(rh)) { combine_overall_coeff(rh); seq.push_back(split_ex_to_pair(lh)); } else { expair p1 = split_ex_to_pair(lh); expair p2 = split_ex_to_pair(rh); int cmpval = p1.rest.compare(p2.rest); if (cmpval==0) { p1.coeff = ex_to(p1.coeff).add_dyn(ex_to(p2.coeff)); if (!ex_to(p1.coeff).is_zero()) { // no further processing is necessary, since this // one element will usually be recombined in eval() seq.push_back(p1); } } else { seq.reserve(2); if (cmpval<0) { seq.push_back(p1); seq.push_back(p2); } else { seq.push_back(p2); seq.push_back(p1); } } } } } void expairseq::construct_from_2_expairseq(const expairseq &s1, const expairseq &s2) { combine_overall_coeff(s1.overall_coeff); combine_overall_coeff(s2.overall_coeff); auto first1 = s1.seq.begin(), last1 = s1.seq.end(); auto first2 = s2.seq.begin(), last2 = s2.seq.end(); seq.reserve(s1.seq.size()+s2.seq.size()); bool needs_further_processing=false; while (first1!=last1 && first2!=last2) { int cmpval = (*first1).rest.compare((*first2).rest); if (cmpval==0) { // combine terms const numeric &newcoeff = ex_to(first1->coeff). add(ex_to(first2->coeff)); if (!newcoeff.is_zero()) { seq.push_back(expair(first1->rest,newcoeff)); if (expair_needs_further_processing(seq.end()-1)) { needs_further_processing = true; } } ++first1; ++first2; } else if (cmpval<0) { seq.push_back(*first1); ++first1; } else { seq.push_back(*first2); ++first2; } } while (first1!=last1) { seq.push_back(*first1); ++first1; } while (first2!=last2) { seq.push_back(*first2); ++first2; } if (needs_further_processing) { epvector v = seq; seq.clear(); construct_from_epvector(std::move(v)); } } void expairseq::construct_from_expairseq_ex(const expairseq &s, const ex &e) { combine_overall_coeff(s.overall_coeff); if (is_exactly_a(e)) { combine_overall_coeff(e); seq = s.seq; return; } auto first = s.seq.begin(), last = s.seq.end(); expair p = split_ex_to_pair(e); seq.reserve(s.seq.size()+1); bool p_pushed = false; bool needs_further_processing=false; // merge p into s.seq while (first!=last) { int cmpval = (*first).rest.compare(p.rest); if (cmpval==0) { // combine terms const numeric &newcoeff = ex_to(first->coeff). add(ex_to(p.coeff)); if (!newcoeff.is_zero()) { seq.push_back(expair(first->rest,newcoeff)); if (expair_needs_further_processing(seq.end()-1)) needs_further_processing = true; } ++first; p_pushed = true; break; } else if (cmpval<0) { seq.push_back(*first); ++first; } else { seq.push_back(p); p_pushed = true; break; } } if (p_pushed) { // while loop exited because p was pushed, now push rest of s.seq while (first!=last) { seq.push_back(*first); ++first; } } else { // while loop exited because s.seq was pushed, now push p seq.push_back(p); } if (needs_further_processing) { epvector v = seq; seq.clear(); construct_from_epvector(std::move(v)); } } void expairseq::construct_from_exvector(const exvector &v) { // simplifications: +(a,+(b,c),d) -> +(a,b,c,d) (associativity) // +(d,b,c,a) -> +(a,b,c,d) (canonicalization) // +(...,x,*(x,c1),*(x,c2)) -> +(...,*(x,1+c1+c2)) (c1, c2 numeric) // (same for (+,*) -> (*,^) make_flat(v); canonicalize(); combine_same_terms_sorted_seq(); } void expairseq::construct_from_epvector(const epvector &v, bool do_index_renaming) { // simplifications: +(a,+(b,c),d) -> +(a,b,c,d) (associativity) // +(d,b,c,a) -> +(a,b,c,d) (canonicalization) // +(...,x,*(x,c1),*(x,c2)) -> +(...,*(x,1+c1+c2)) (c1, c2 numeric) // same for (+,*) -> (*,^) make_flat(v, do_index_renaming); canonicalize(); combine_same_terms_sorted_seq(); } void expairseq::construct_from_epvector(epvector &&v, bool do_index_renaming) { // simplifications: +(a,+(b,c),d) -> +(a,b,c,d) (associativity) // +(d,b,c,a) -> +(a,b,c,d) (canonicalization) // +(...,x,*(x,c1),*(x,c2)) -> +(...,*(x,1+c1+c2)) (c1, c2 numeric) // same for (+,*) -> (*,^) make_flat(std::move(v), do_index_renaming); canonicalize(); combine_same_terms_sorted_seq(); } /** Combine this expairseq with argument exvector. * It cares for associativity as well as for special handling of numerics. */ void expairseq::make_flat(const exvector &v) { // count number of operands which are of same expairseq derived type // and their cumulative number of operands int nexpairseqs = 0; int noperands = 0; bool do_idx_rename = false; for (auto & cit : v) { if (typeid(ex_to(cit)) == typeid(*this)) { ++nexpairseqs; noperands += ex_to(cit).seq.size(); } if (is_a(*this) && (!do_idx_rename) && cit.info(info_flags::has_indices)) do_idx_rename = true; } // reserve seq and coeffseq which will hold all operands seq.reserve(v.size()+noperands-nexpairseqs); // copy elements and split off numerical part make_flat_inserter mf(v, do_idx_rename); for (auto & cit : v) { if (typeid(ex_to(cit)) == typeid(*this)) { ex newfactor = mf.handle_factor(cit, _ex1); const expairseq &subseqref = ex_to(newfactor); combine_overall_coeff(subseqref.overall_coeff); for (auto & cit_s : subseqref.seq) { seq.push_back(cit_s); } } else { if (is_exactly_a(cit)) combine_overall_coeff(cit); else { ex newfactor = mf.handle_factor(cit, _ex1); seq.push_back(split_ex_to_pair(newfactor)); } } } } /** Combine this expairseq with argument epvector. * It cares for associativity as well as for special handling of numerics. */ void expairseq::make_flat(const epvector &v, bool do_index_renaming) { // count number of operands which are of same expairseq derived type // and their cumulative number of operands int nexpairseqs = 0; int noperands = 0; bool really_need_rename_inds = false; for (auto & cit : v) { if (typeid(ex_to(cit.rest)) == typeid(*this)) { ++nexpairseqs; noperands += ex_to(cit.rest).seq.size(); } if ((!really_need_rename_inds) && is_a(*this) && cit.rest.info(info_flags::has_indices)) really_need_rename_inds = true; } do_index_renaming = do_index_renaming && really_need_rename_inds; // reserve seq and coeffseq which will hold all operands seq.reserve(v.size()+noperands-nexpairseqs); make_flat_inserter mf(v, do_index_renaming); // copy elements and split off numerical part for (auto & cit : v) { if (typeid(ex_to(cit.rest)) == typeid(*this) && this->can_make_flat(cit)) { ex newrest = mf.handle_factor(cit.rest, cit.coeff); const expairseq &subseqref = ex_to(newrest); combine_overall_coeff(ex_to(subseqref.overall_coeff), ex_to(cit.coeff)); for (auto & cit_s : subseqref.seq) { seq.push_back(expair(cit_s.rest, ex_to(cit_s.coeff).mul_dyn(ex_to(cit.coeff)))); } } else { if (cit.is_canonical_numeric()) combine_overall_coeff(mf.handle_factor(cit.rest, _ex1)); else { ex rest = cit.rest; ex newrest = mf.handle_factor(rest, cit.coeff); if (are_ex_trivially_equal(newrest, rest)) seq.push_back(cit); else seq.push_back(expair(newrest, cit.coeff)); } } } } /** Brings this expairseq into a sorted (canonical) form. */ void expairseq::canonicalize() { std::sort(seq.begin(), seq.end(), expair_rest_is_less()); } /** Compact a presorted expairseq by combining all matching expairs to one * each. On an add object, this is responsible for 2*x+3*x+y -> 5*x+y, for * instance. */ void expairseq::combine_same_terms_sorted_seq() { if (seq.size()<2) return; bool needs_further_processing = false; auto itin1 = seq.begin(); auto itin2 = itin1 + 1; auto itout = itin1; auto last = seq.end(); // must_copy will be set to true the first time some combination is // possible from then on the sequence has changed and must be compacted bool must_copy = false; while (itin2!=last) { if (itin1->rest.compare(itin2->rest)==0) { itin1->coeff = ex_to(itin1->coeff). add_dyn(ex_to(itin2->coeff)); if (expair_needs_further_processing(itin1)) needs_further_processing = true; must_copy = true; } else { if (!ex_to(itin1->coeff).is_zero()) { if (must_copy) *itout = *itin1; ++itout; } itin1 = itin2; } ++itin2; } if (!ex_to(itin1->coeff).is_zero()) { if (must_copy) *itout = *itin1; ++itout; } if (itout!=last) seq.erase(itout,last); if (needs_further_processing) { epvector v = seq; seq.clear(); construct_from_epvector(std::move(v)); } } /** Check if this expairseq is in sorted (canonical) form. Useful mainly for * debugging or in assertions since being sorted is an invariance. */ bool expairseq::is_canonical() const { if (seq.size() <= 1) return 1; auto it = seq.begin(), itend = seq.end(); auto it_last = it; for (++it; it!=itend; it_last=it, ++it) { if (!(it_last->is_less(*it) || it_last->is_equal(*it))) { if (!is_exactly_a(it_last->rest) || !is_exactly_a(it->rest)) { // double test makes it easier to set a breakpoint... if (!is_exactly_a(it_last->rest) || !is_exactly_a(it->rest)) { printpair(std::clog, *it_last, 0); std::clog << ">"; printpair(std::clog, *it, 0); std::clog << "\n"; std::clog << "pair1:" << std::endl; it_last->rest.print(print_tree(std::clog)); it_last->coeff.print(print_tree(std::clog)); std::clog << "pair2:" << std::endl; it->rest.print(print_tree(std::clog)); it->coeff.print(print_tree(std::clog)); return 0; } } } } return 1; } /** Member-wise expand the expairs in this sequence. * * @see expairseq::expand() * @return epvector containing expanded pairs, empty if no members * had to be changed. */ epvector expairseq::expandchildren(unsigned options) const { auto cit = seq.begin(), last = seq.end(); while (cit!=last) { const ex &expanded_ex = cit->rest.expand(options); if (!are_ex_trivially_equal(cit->rest,expanded_ex)) { // something changed, copy seq, eval and return it epvector s; s.reserve(seq.size()); // copy parts of seq which are known not to have changed auto cit2 = seq.begin(); while (cit2!=cit) { s.push_back(*cit2); ++cit2; } // copy first changed element s.push_back(combine_ex_with_coeff_to_pair(expanded_ex, cit2->coeff)); ++cit2; // copy rest while (cit2!=last) { s.push_back(combine_ex_with_coeff_to_pair(cit2->rest.expand(options), cit2->coeff)); ++cit2; } return s; } ++cit; } return epvector(); // empty signalling nothing has changed } /** Member-wise evaluate the expairs in this sequence. * * @see expairseq::eval() * @return epvector containing evaluated pairs, empty if no members * had to be changed. */ epvector expairseq::evalchildren(int level) const { if (level==1) return epvector(); // nothing had to be evaluated if (level == -max_recursion_level) throw(std::runtime_error("max recursion level reached")); --level; auto cit = seq.begin(), last = seq.end(); while (cit!=last) { const ex evaled_ex = cit->rest.eval(level); if (!are_ex_trivially_equal(cit->rest,evaled_ex)) { // something changed, copy seq, eval and return it epvector s; s.reserve(seq.size()); // copy parts of seq which are known not to have changed auto cit2 = seq.begin(); while (cit2!=cit) { s.push_back(*cit2); ++cit2; } // copy first changed element s.push_back(combine_ex_with_coeff_to_pair(evaled_ex, cit2->coeff)); ++cit2; // copy rest while (cit2!=last) { s.push_back(combine_ex_with_coeff_to_pair(cit2->rest.eval(level), cit2->coeff)); ++cit2; } return std::move(s); } ++cit; } return epvector(); // signalling nothing has changed } /** Member-wise substitute in this sequence. * * @see expairseq::subs() * @return epvector containing expanded pairs, empty if no members * had to be changed. */ epvector expairseq::subschildren(const exmap & m, unsigned options) const { // When any of the objects to be substituted is a product or power // we have to recombine the pairs because the numeric coefficients may // be part of the search pattern. if (!(options & (subs_options::pattern_is_product | subs_options::pattern_is_not_product))) { // Search the list of substitutions and cache our findings for (auto & it : m) { if (is_exactly_a(it.first) || is_exactly_a(it.first)) { options |= subs_options::pattern_is_product; break; } } if (!(options & subs_options::pattern_is_product)) options |= subs_options::pattern_is_not_product; } if (options & subs_options::pattern_is_product) { // Substitute in the recombined pairs auto cit = seq.begin(), last = seq.end(); while (cit != last) { const ex &orig_ex = recombine_pair_to_ex(*cit); const ex &subsed_ex = orig_ex.subs(m, options); if (!are_ex_trivially_equal(orig_ex, subsed_ex)) { // Something changed, copy seq, subs and return it epvector s; s.reserve(seq.size()); // Copy parts of seq which are known not to have changed s.insert(s.begin(), seq.begin(), cit); // Copy first changed element s.push_back(split_ex_to_pair(subsed_ex)); ++cit; // Copy rest while (cit != last) { s.push_back(split_ex_to_pair(recombine_pair_to_ex(*cit).subs(m, options))); ++cit; } return s; } ++cit; } } else { // Substitute only in the "rest" part of the pairs auto cit = seq.begin(), last = seq.end(); while (cit != last) { const ex &subsed_ex = cit->rest.subs(m, options); if (!are_ex_trivially_equal(cit->rest, subsed_ex)) { // Something changed, copy seq, subs and return it epvector s; s.reserve(seq.size()); // Copy parts of seq which are known not to have changed s.insert(s.begin(), seq.begin(), cit); // Copy first changed element s.push_back(combine_ex_with_coeff_to_pair(subsed_ex, cit->coeff)); ++cit; // Copy rest while (cit != last) { s.push_back(combine_ex_with_coeff_to_pair(cit->rest.subs(m, options), cit->coeff)); ++cit; } return s; } ++cit; } } // Nothing has changed return epvector(); } ////////// // static member variables ////////// } // namespace GiNaC