/** @file color.cpp * * Implementation of GiNaC's color (SU(3) Lie algebra) objects. */ /* * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "color.h" #include "idx.h" #include "ncmul.h" #include "symmetry.h" #include "operators.h" #include "numeric.h" #include "mul.h" #include "power.h" // for sqrt() #include "symbol.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(color, indexed) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(su3one, tensor, print_func(&su3one::do_print). print_func(&su3one::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(su3t, tensor, print_func(&su3t::do_print). print_func(&su3t::do_print)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(su3f, tensor, print_func(&su3f::do_print). print_func(&su3f::do_print)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(su3d, tensor, print_func(&su3d::do_print). print_func(&su3d::do_print)) ////////// // default constructors ////////// color::color() : representation_label(0) { tinfo_key = TINFO_color; } DEFAULT_CTOR(su3one) DEFAULT_CTOR(su3t) DEFAULT_CTOR(su3f) DEFAULT_CTOR(su3d) ////////// // other constructors ////////// /** Construct object without any color index. This constructor is for * internal use only. Use the color_ONE() function instead. * @see color_ONE */ color::color(const ex & b, unsigned char rl) : inherited(b), representation_label(rl) { tinfo_key = TINFO_color; } /** Construct object with one color index. This constructor is for internal * use only. Use the color_T() function instead. * @see color_T */ color::color(const ex & b, const ex & i1, unsigned char rl) : inherited(b, i1), representation_label(rl) { tinfo_key = TINFO_color; } color::color(unsigned char rl, const exvector & v, bool discardable) : inherited(sy_none(), v, discardable), representation_label(rl) { tinfo_key = TINFO_color; } color::color(unsigned char rl, std::auto_ptr vp) : inherited(sy_none(), vp), representation_label(rl) { tinfo_key = TINFO_color; } ////////// // archiving ////////// color::color(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) { unsigned rl; n.find_unsigned("label", rl); representation_label = rl; } void color::archive(archive_node &n) const { inherited::archive(n); n.add_unsigned("label", representation_label); } DEFAULT_UNARCHIVE(color) DEFAULT_ARCHIVING(su3one) DEFAULT_ARCHIVING(su3t) DEFAULT_ARCHIVING(su3f) DEFAULT_ARCHIVING(su3d) ////////// // functions overriding virtual functions from base classes ////////// int color::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const color &o = static_cast(other); if (representation_label != o.representation_label) { // different representation label return representation_label < o.representation_label ? -1 : 1; } return inherited::compare_same_type(other); } bool color::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const color &o = static_cast(other); return representation_label == o.representation_label; } DEFAULT_COMPARE(su3one) DEFAULT_COMPARE(su3t) DEFAULT_COMPARE(su3f) DEFAULT_COMPARE(su3d) DEFAULT_PRINT_LATEX(su3one, "ONE", "\\mathbb{1}") DEFAULT_PRINT(su3t, "T") DEFAULT_PRINT(su3f, "f") DEFAULT_PRINT(su3d, "d") /** Perform automatic simplification on noncommutative product of color * objects. This removes superfluous ONEs. */ ex color::eval_ncmul(const exvector & v) const { exvector s; s.reserve(v.size()); // Remove superfluous ONEs exvector::const_iterator it = v.begin(), itend = v.end(); while (it != itend) { if (!is_a(it->op(0))) s.push_back(*it); it++; } if (s.empty()) return color(su3one(), representation_label); else return hold_ncmul(s); } ex color::thiscontainer(const exvector & v) const { return color(representation_label, v); } ex color::thiscontainer(std::auto_ptr vp) const { return color(representation_label, vp); } /** Given a vector iv3 of three indices and a vector iv2 of two indices that * is a subset of iv3, return the (free) index that is in iv3 but not in * iv2 and the sign introduced by permuting that index to the front. * * @param iv3 Vector of 3 indices * @param iv2 Vector of 2 indices, must be a subset of iv3 * @param sig Returs sign introduced by index permutation * @return the free index (the one that is in iv3 but not in iv2) */ static ex permute_free_index_to_front(const exvector & iv3, const exvector & iv2, int & sig) { GINAC_ASSERT(iv3.size() == 3); GINAC_ASSERT(iv2.size() == 2); sig = 1; #define TEST_PERMUTATION(A,B,C,P) \ if (iv3[B].is_equal(iv2[0]) && iv3[C].is_equal(iv2[1])) { \ sig = P; \ return iv3[A]; \ } TEST_PERMUTATION(0,1,2, 1); TEST_PERMUTATION(0,2,1, -1); TEST_PERMUTATION(1,0,2, -1); TEST_PERMUTATION(1,2,0, 1); TEST_PERMUTATION(2,0,1, 1); TEST_PERMUTATION(2,1,0, -1); throw(std::logic_error("permute_free_index_to_front(): no valid permutation found")); } /** Automatic symbolic evaluation of indexed symmetric structure constant. */ ex su3d::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 4); GINAC_ASSERT(is_a(i.op(0))); // Convolutions are zero if (!(static_cast(i).get_dummy_indices().empty())) return _ex0; // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::nonnegint)) { // Sort indices int v[3]; for (unsigned j=0; j<3; j++) v[j] = ex_to(ex_to(i.op(j + 1)).get_value()).to_int(); if (v[0] > v[1]) std::swap(v[0], v[1]); if (v[0] > v[2]) std::swap(v[0], v[2]); if (v[1] > v[2]) std::swap(v[1], v[2]); #define CMPINDICES(A,B,C) ((v[0] == (A)) && (v[1] == (B)) && (v[2] == (C))) // Check for non-zero elements if (CMPINDICES(1,4,6) || CMPINDICES(1,5,7) || CMPINDICES(2,5,6) || CMPINDICES(3,4,4) || CMPINDICES(3,5,5)) return _ex1_2; else if (CMPINDICES(2,4,7) || CMPINDICES(3,6,6) || CMPINDICES(3,7,7)) return _ex_1_2; else if (CMPINDICES(1,1,8) || CMPINDICES(2,2,8) || CMPINDICES(3,3,8)) return sqrt(_ex3)*_ex1_3; else if (CMPINDICES(8,8,8)) return sqrt(_ex3)*_ex_1_3; else if (CMPINDICES(4,4,8) || CMPINDICES(5,5,8) || CMPINDICES(6,6,8) || CMPINDICES(7,7,8)) return sqrt(_ex3)/_ex_6; else return _ex0; } // No further simplifications return i.hold(); } /** Automatic symbolic evaluation of indexed antisymmetric structure constant. */ ex su3f::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 4); GINAC_ASSERT(is_a(i.op(0))); // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::nonnegint)) { // Sort indices, remember permutation sign int v[3]; for (unsigned j=0; j<3; j++) v[j] = ex_to(ex_to(i.op(j + 1)).get_value()).to_int(); int sign = 1; if (v[0] > v[1]) { std::swap(v[0], v[1]); sign = -sign; } if (v[0] > v[2]) { std::swap(v[0], v[2]); sign = -sign; } if (v[1] > v[2]) { std::swap(v[1], v[2]); sign = -sign; } // Check for non-zero elements if (CMPINDICES(1,2,3)) return sign; else if (CMPINDICES(1,4,7) || CMPINDICES(2,4,6) || CMPINDICES(2,5,7) || CMPINDICES(3,4,5)) return _ex1_2 * sign; else if (CMPINDICES(1,5,6) || CMPINDICES(3,6,7)) return _ex_1_2 * sign; else if (CMPINDICES(4,5,8) || CMPINDICES(6,7,8)) return sqrt(_ex3)/2 * sign; else return _ex0; } // No further simplifications return i.hold(); } /** Contraction of generator with something else. */ bool su3t::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 2); GINAC_ASSERT(is_a(self->op(0))); unsigned char rl = ex_to(*self).get_representation_label(); if (is_exactly_a(other->op(0))) { // Contraction only makes sense if the represenation labels are equal GINAC_ASSERT(is_a(*other)); if (ex_to(*other).get_representation_label() != rl) return false; // T.a T.a = 4/3 ONE if (other - self == 1) { *self = numeric(4, 3); *other = color_ONE(rl); return true; // T.a T.b T.a = -1/6 T.b } else if (other - self == 2 && is_a(self[1])) { *self = numeric(-1, 6); *other = _ex1; return true; // T.a S T.a = 1/2 Tr(S) - 1/6 S } else { exvector::iterator it = self + 1; while (it != other) { if (!is_a(*it)) { return false; } it++; } it = self + 1; ex S = _ex1; while (it != other) { S *= *it; *it++ = _ex1; } *self = color_trace(S, rl) * color_ONE(rl) / 2 - S / 6; *other = _ex1; return true; } } return false; } /** Contraction of an indexed symmetric structure constant with something else. */ bool su3d::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 4); GINAC_ASSERT(is_a(self->op(0))); if (is_exactly_a(other->op(0))) { // Find the dummy indices of the contraction exvector self_indices = ex_to(*self).get_indices(); exvector other_indices = ex_to(*other).get_indices(); exvector all_indices = self_indices; all_indices.insert(all_indices.end(), other_indices.begin(), other_indices.end()); exvector free_indices, dummy_indices; find_free_and_dummy(all_indices, free_indices, dummy_indices); // d.abc d.abc = 40/3 if (dummy_indices.size() == 3) { *self = numeric(40, 3); *other = _ex1; return true; // d.akl d.bkl = 5/3 delta.ab } else if (dummy_indices.size() == 2) { exvector a; std::back_insert_iterator ita(a); ita = set_difference(self_indices.begin(), self_indices.end(), dummy_indices.begin(), dummy_indices.end(), ita, ex_is_less()); ita = set_difference(other_indices.begin(), other_indices.end(), dummy_indices.begin(), dummy_indices.end(), ita, ex_is_less()); GINAC_ASSERT(a.size() == 2); *self = numeric(5, 3) * delta_tensor(a[0], a[1]); *other = _ex1; return true; } } else if (is_exactly_a(other->op(0))) { // d.abc T.b T.c = 5/6 T.a if (other+1 != v.end() && is_exactly_a(other[1].op(0)) && ex_to(*self).has_dummy_index_for(other[1].op(1))) { exvector self_indices = ex_to(*self).get_indices(); exvector dummy_indices; dummy_indices.push_back(other[0].op(1)); dummy_indices.push_back(other[1].op(1)); int sig; ex a = permute_free_index_to_front(self_indices, dummy_indices, sig); *self = numeric(5, 6); other[0] = color_T(a, ex_to(other[0]).get_representation_label()); other[1] = _ex1; return true; } } return false; } /** Contraction of an indexed antisymmetric structure constant with something else. */ bool su3f::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 4); GINAC_ASSERT(is_a(self->op(0))); if (is_exactly_a(other->op(0))) { // f*d is handled by su3d class // Find the dummy indices of the contraction exvector dummy_indices; dummy_indices = ex_to(*self).get_dummy_indices(ex_to(*other)); // f.abc f.abc = 24 if (dummy_indices.size() == 3) { *self = 24; *other = _ex1; return true; // f.akl f.bkl = 3 delta.ab } else if (dummy_indices.size() == 2) { int sign1, sign2; ex a = permute_free_index_to_front(ex_to(*self).get_indices(), dummy_indices, sign1); ex b = permute_free_index_to_front(ex_to(*other).get_indices(), dummy_indices, sign2); *self = sign1 * sign2 * 3 * delta_tensor(a, b); *other = _ex1; return true; } } else if (is_exactly_a(other->op(0))) { // f.abc T.b T.c = 3/2 I T.a if (other+1 != v.end() && is_exactly_a(other[1].op(0)) && ex_to(*self).has_dummy_index_for(other[1].op(1))) { exvector self_indices = ex_to(*self).get_indices(); exvector dummy_indices; dummy_indices.push_back(other[0].op(1)); dummy_indices.push_back(other[1].op(1)); int sig; ex a = permute_free_index_to_front(self_indices, dummy_indices, sig); *self = numeric(3, 2) * sig * I; other[0] = color_T(a, ex_to(other[0]).get_representation_label()); other[1] = _ex1; return true; } } return false; } ////////// // global functions ////////// ex color_ONE(unsigned char rl) { return color(su3one(), rl); } ex color_T(const ex & a, unsigned char rl) { if (!is_a(a)) throw(std::invalid_argument("indices of color_T must be of type idx")); if (!ex_to(a).get_dim().is_equal(8)) throw(std::invalid_argument("index dimension for color_T must be 8")); return color(su3t(), a, rl); } ex color_f(const ex & a, const ex & b, const ex & c) { if (!is_a(a) || !is_a(b) || !is_a(c)) throw(std::invalid_argument("indices of color_f must be of type idx")); if (!ex_to(a).get_dim().is_equal(8) || !ex_to(b).get_dim().is_equal(8) || !ex_to(c).get_dim().is_equal(8)) throw(std::invalid_argument("index dimension for color_f must be 8")); return indexed(su3f(), sy_anti(), a, b, c); } ex color_d(const ex & a, const ex & b, const ex & c) { if (!is_a(a) || !is_a(b) || !is_a(c)) throw(std::invalid_argument("indices of color_d must be of type idx")); if (!ex_to(a).get_dim().is_equal(8) || !ex_to(b).get_dim().is_equal(8) || !ex_to(c).get_dim().is_equal(8)) throw(std::invalid_argument("index dimension for color_d must be 8")); return indexed(su3d(), sy_symm(), a, b, c); } ex color_h(const ex & a, const ex & b, const ex & c) { return color_d(a, b, c) + I * color_f(a, b, c); } /** Check whether a given tinfo key (as returned by return_type_tinfo() * is that of a color object with the specified representation label. */ static bool is_color_tinfo(unsigned ti, unsigned char rl) { return ti == (TINFO_color + rl); } ex color_trace(const ex & e, unsigned char rl) { if (is_a(e)) { if (ex_to(e).get_representation_label() == rl && is_a(e.op(0))) return _ex3; else return _ex0; } else if (is_exactly_a(e)) { // Trace of product: pull out non-color factors ex prod = _ex1; for (size_t i=0; i(e)) { if (!is_color_tinfo(e.return_type_tinfo(), rl)) return _ex0; // Expand product, if necessary ex e_expanded = e.expand(); if (!is_a(e_expanded)) return color_trace(e_expanded, rl); size_t num = e.nops(); if (num == 2) { // Tr T_a T_b = 1/2 delta_a_b return delta_tensor(e.op(0).op(1), e.op(1).op(1)) / 2; } else if (num == 3) { // Tr T_a T_b T_c = 1/4 h_a_b_c return color_h(e.op(0).op(1), e.op(1).op(1), e.op(2).op(1)) / 4; } else { // Traces of 4 or more generators are computed recursively: // Tr T_a1 .. T_an = // 1/6 delta_a(n-1)_an Tr T_a1 .. T_a(n-2) // + 1/2 h_a(n-1)_an_k Tr T_a1 .. T_a(n-2) T_k const ex &last_index = e.op(num - 1).op(1); const ex &next_to_last_index = e.op(num - 2).op(1); idx summation_index((new symbol)->setflag(status_flags::dynallocated), 8); exvector v1; v1.reserve(num - 2); for (size_t i=0; i 0) { // Trace maps to all other container classes (this includes sums) pointer_to_map_function_1arg fcn(color_trace, rl); return e.map(fcn); } else return _ex0; } } // namespace GiNaC