/** @file clifford.h * * Interface to GiNaC's clifford algebra (Dirac gamma) objects. */ /* * GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef __GINAC_CLIFFORD_H__ #define __GINAC_CLIFFORD_H__ #include "indexed.h" #include "tensor.h" #include "symbol.h" #include "idx.h" #include namespace GiNaC { /** This class holds an object representing an element of the Clifford * algebra (the Dirac gamma matrices). These objects only carry Lorentz * indices. Spinor indices are hidden. A representation label (an unsigned * 8-bit integer) is used to distinguish elements from different Clifford * algebras (objects with different labels commutate). */ class clifford : public indexed { GINAC_DECLARE_REGISTERED_CLASS(clifford, indexed) // other constructors public: clifford(const ex & b, unsigned char rl = 0); clifford(const ex & b, const ex & mu, const ex & metr, unsigned char rl = 0, int comm_sign = -1); // internal constructors clifford(unsigned char rl, const ex & metr, int comm_sign, const exvector & v, bool discardable = false); clifford(unsigned char rl, const ex & metr, int comm_sign, std::auto_ptr vp); // functions overriding virtual functions from base classes public: unsigned precedence() const { return 65; } void archive(archive_node& n) const; void read_archive(const archive_node& n, lst& sym_lst); protected: ex eval_ncmul(const exvector & v) const; bool match_same_type(const basic & other) const; ex thiscontainer(const exvector & v) const; ex thiscontainer(std::auto_ptr vp) const; unsigned return_type() const { return return_types::noncommutative; } return_type_t return_type_tinfo() const; // non-virtual functions in this class public: unsigned char get_representation_label() const { return representation_label; } ex get_metric() const { return metric; } virtual ex get_metric(const ex & i, const ex & j, bool symmetrised = false) const; bool same_metric(const ex & other) const; int get_commutator_sign() const { return commutator_sign; } //**< See the member variable commutator_sign */ inline size_t nops() const {return inherited::nops() + 1; } ex op(size_t i) const; ex & let_op(size_t i); ex subs(const exmap & m, unsigned options = 0) const; protected: void do_print_dflt(const print_dflt & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; // member variables protected: unsigned char representation_label; /**< Representation label to distinguish independent spin lines */ ex metric; /**< Metric of the space, all constructors make it an indexed object */ int commutator_sign; /**< It is the sign in the definition e~i e~j +/- e~j e~i = B(i, j) + B(j, i)*/ }; GINAC_DECLARE_UNARCHIVER(clifford); /** This class represents the Clifford algebra unity element. */ class diracone : public tensor { GINAC_DECLARE_REGISTERED_CLASS(diracone, tensor) // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; GINAC_DECLARE_UNARCHIVER(diracone); /** This class represents the Clifford algebra generators (units). */ class cliffordunit : public tensor { GINAC_DECLARE_REGISTERED_CLASS(cliffordunit, tensor) // functions overriding virtual functions from base classes public: bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; /** This class represents the Dirac gamma Lorentz vector. */ class diracgamma : public cliffordunit { GINAC_DECLARE_REGISTERED_CLASS(diracgamma, cliffordunit) // functions overriding virtual functions from base classes public: bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; GINAC_DECLARE_UNARCHIVER(diracgamma); /** This class represents the Dirac gamma5 object which anticommutates with * all other gammas. */ class diracgamma5 : public tensor { GINAC_DECLARE_REGISTERED_CLASS(diracgamma5, tensor) // functions overriding virtual functions from base classes ex conjugate() const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; GINAC_DECLARE_UNARCHIVER(diracgamma5); /** This class represents the Dirac gammaL object which behaves like * 1/2 (1-gamma5). */ class diracgammaL : public tensor { GINAC_DECLARE_REGISTERED_CLASS(diracgammaL, tensor) // functions overriding virtual functions from base classes ex conjugate() const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; GINAC_DECLARE_UNARCHIVER(diracgammaL); /** This class represents the Dirac gammaL object which behaves like * 1/2 (1+gamma5). */ class diracgammaR : public tensor { GINAC_DECLARE_REGISTERED_CLASS(diracgammaR, tensor) // functions overriding virtual functions from base classes ex conjugate() const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; GINAC_DECLARE_UNARCHIVER(diracgammaR); // global functions /** Check whether a given return_type_t object (as returned by return_type_tinfo() * is that of a clifford object (with an arbitrary representation label). * * @param ti tinfo key */ inline bool is_clifford_tinfo(const return_type_t& ti) { return *(ti.tinfo) == typeid(clifford); } /** Create a Clifford unity object. * * @param rl Representation label * @return newly constructed object */ ex dirac_ONE(unsigned char rl = 0); /** Create a Clifford unit object. * * @param mu Index (must be of class varidx or a derived class) * @param metr Metric (should be indexed, tensmetric or a derived class, or a matrix) * @param rl Representation label * @return newly constructed Clifford unit object */ ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0); /** Create a Dirac gamma object. * * @param mu Index (must be of class varidx or a derived class) * @param rl Representation label * @return newly constructed gamma object */ ex dirac_gamma(const ex & mu, unsigned char rl = 0); /** Create a Dirac gamma5 object. * * @param rl Representation label * @return newly constructed object */ ex dirac_gamma5(unsigned char rl = 0); /** Create a Dirac gammaL object. * * @param rl Representation label * @return newly constructed object */ ex dirac_gammaL(unsigned char rl = 0); /** Create a Dirac gammaR object. * * @param rl Representation label * @return newly constructed object */ ex dirac_gammaR(unsigned char rl = 0); /** Create a term of the form e_mu * gamma~mu with a unique index mu. * * @param e Original expression * @param dim Dimension of index * @param rl Representation label */ ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0); /** Calculate dirac traces over the specified set of representation labels. * The computed trace is a linear functional that is equal to the usual * trace only in D = 4 dimensions. In particular, the functional is not * always cyclic in D != 4 dimensions when gamma5 is involved. * * @param e Expression to take the trace of * @param rls Set of representation labels * @param trONE Expression to be returned as the trace of the unit matrix */ ex dirac_trace(const ex & e, const std::set & rls, const ex & trONE = 4); /** Calculate dirac traces over the specified list of representation labels. * The computed trace is a linear functional that is equal to the usual * trace only in D = 4 dimensions. In particular, the functional is not * always cyclic in D != 4 dimensions when gamma5 is involved. * * @param e Expression to take the trace of * @param rll List of representation labels * @param trONE Expression to be returned as the trace of the unit matrix */ ex dirac_trace(const ex & e, const lst & rll, const ex & trONE = 4); /** Calculate the trace of an expression containing gamma objects with * a specified representation label. The computed trace is a linear * functional that is equal to the usual trace only in D = 4 dimensions. * In particular, the functional is not always cyclic in D != 4 dimensions * when gamma5 is involved. * * @param e Expression to take the trace of * @param rl Representation label * @param trONE Expression to be returned as the trace of the unit matrix */ ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4); /** Bring all products of clifford objects in an expression into a canonical * order. This is not necessarily the most simple form but it will allow * to check two expressions for equality. */ ex canonicalize_clifford(const ex & e); /** Automorphism of the Clifford algebra, simply changes signs of all * clifford units. */ ex clifford_prime(const ex & e); /** Main anti-automorphism of the Clifford algebra: makes reversion * and changes signs of all clifford units. */ inline ex clifford_bar(const ex & e) { return clifford_prime(e.conjugate()); } /** Reversion of the Clifford algebra, coincides with the conjugate(). */ inline ex clifford_star(const ex & e) { return e.conjugate(); } /** Replaces dirac_ONE's (with a representation_label no less than rl) in e with 1. * For the default value rl = 0 remove all of them. Aborts if e contains any * clifford_unit with representation_label to be removed. * * @param e Expression to be processed * @param rl Value of representation label * @param options Defines some internal use */ ex remove_dirac_ONE(const ex & e, unsigned char rl = 0, unsigned options = 0); /** Returns the maximal representation label of a clifford object * if e contains at least one, otherwise returns -1 * * @param e Expression to be processed * @ignore_ONE defines if clifford_ONE should be ignored in the search*/ char clifford_max_label(const ex & e, bool ignore_ONE = false); /** Calculation of the norm in the Clifford algebra. */ ex clifford_norm(const ex & e); /** Calculation of the inverse in the Clifford algebra. */ ex clifford_inverse(const ex & e); /** List or vector conversion into the Clifford vector. * * @param v List or vector of coordinates * @param mu Index (must be of class varidx or a derived class) * @param metr Metric (should be indexed, tensmetric or a derived class, or a matrix) * @param rl Representation label * @param e Clifford unit object * @return Clifford vector with given components */ ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr, unsigned char rl = 0); ex lst_to_clifford(const ex & v, const ex & e); /** An inverse function to lst_to_clifford(). For given Clifford vector extracts * its components with respect to given Clifford unit. Obtained components may * contain Clifford units with a different metric. Extraction is based on * the algebraic formula (e * c.i + c.i * e)/ pow(e.i, 2) for non-degenerate cases * (i.e. neither pow(e.i, 2) = 0). * * @param e Clifford expression to be decomposed into components * @param c Clifford unit defining the metric for splitting (should have numeric dimension of indices) * @param algebraic Use algebraic or symbolic algorithm for extractions * @return List of components of a Clifford vector*/ lst clifford_to_lst(const ex & e, const ex & c, bool algebraic=true); /** Calculations of Moebius transformations (conformal map) defined by a 2x2 Clifford matrix * (a b\\c d) in linear spaces with arbitrary signature. The expression is * (a * x + b)/(c * x + d), where x is a vector build from list v with metric G. * (see Jan Cnops. An introduction to {D}irac operators on manifolds, v.24 of * Progress in Mathematical Physics. Birkhauser Boston Inc., Boston, MA, 2002.) * * @param a (1,1) entry of the defining matrix * @param b (1,2) entry of the defining matrix * @param c (2,1) entry of the defining matrix * @param d (2,2) entry of the defining matrix * @param v Vector to be transformed * @param G Metric of the surrounding space, may be a Clifford unit then the next parameter is ignored * @param rl Representation label * @return List of components of the transformed vector*/ ex clifford_moebius_map(const ex & a, const ex & b, const ex & c, const ex & d, const ex & v, const ex & G, unsigned char rl = 0); /** The second form of Moebius transformations defined by a 2x2 Clifford matrix M * This function takes the transformation matrix M as a single entity. * * @param M the defining matrix * @param v Vector to be transformed * @param G Metric of the surrounding space, may be a Clifford unit then the next parameter is ignored * @param rl Representation label * @return List of components of the transformed vector*/ ex clifford_moebius_map(const ex & M, const ex & v, const ex & G, unsigned char rl = 0); } // namespace GiNaC #endif // ndef __GINAC_CLIFFORD_H__