/** @file clifford.h * * Interface to GiNaC's clifford algebra (Dirac gamma) objects. */ /* * GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef __GINAC_CLIFFORD_H__ #define __GINAC_CLIFFORD_H__ #include "indexed.h" #include "tensor.h" #include "symbol.h" #include "idx.h" namespace GiNaC { /** This class holds an object representing an element of the Clifford * algebra (the Dirac gamma matrices). These objects only carry Lorentz * indices. Spinor indices are hidden. A representation label (an unsigned * 8-bit integer) is used to distinguish elements from different Clifford * algebras (objects with different labels commutate). */ class clifford : public indexed { GINAC_DECLARE_REGISTERED_CLASS(clifford, indexed) // other constructors public: clifford(const ex & b, unsigned char rl = 0); clifford(const ex & b, const ex & mu, const ex & metr, unsigned char rl = 0); // internal constructors clifford(unsigned char rl, const ex & metr, const exvector & v, bool discardable = false); clifford(unsigned char rl, const ex & metr, std::auto_ptr vp); // functions overriding virtual functions from base classes protected: ex eval_ncmul(const exvector & v) const; bool match_same_type(const basic & other) const; ex thiscontainer(const exvector & v) const; ex thiscontainer(std::auto_ptr vp) const; unsigned return_type() const { return return_types::noncommutative; } unsigned return_type_tinfo() const { return TINFO_clifford + representation_label; } // non-virtual functions in this class public: unsigned char get_representation_label() const { return representation_label; } ex get_metric() const { return metric; } ex get_metric(const ex & i, const ex & j) const; bool same_metric(const ex & other) const; protected: void do_print_dflt(const print_dflt & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; // member variables private: unsigned char representation_label; /**< Representation label to distinguish independent spin lines */ ex metric; }; /** This class represents the Clifford algebra unity element. */ class diracone : public tensor { GINAC_DECLARE_REGISTERED_CLASS(diracone, tensor) // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; /** This class represents the Clifford algebra generators (units). */ class cliffordunit : public tensor { GINAC_DECLARE_REGISTERED_CLASS(cliffordunit, tensor) // other constructors protected: cliffordunit(unsigned ti) : inherited(ti) {} // functions overriding virtual functions from base classes public: bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; /** This class represents the Dirac gamma Lorentz vector. */ class diracgamma : public cliffordunit { GINAC_DECLARE_REGISTERED_CLASS(diracgamma, cliffordunit) // functions overriding virtual functions from base classes public: bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; /** This class represents the Dirac gamma5 object which anticommutates with * all other gammas. */ class diracgamma5 : public tensor { GINAC_DECLARE_REGISTERED_CLASS(diracgamma5, tensor) // functions overriding virtual functions from base classes ex conjugate() const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; /** This class represents the Dirac gammaL object which behaves like * 1/2 (1-gamma5). */ class diracgammaL : public tensor { GINAC_DECLARE_REGISTERED_CLASS(diracgammaL, tensor) // functions overriding virtual functions from base classes ex conjugate() const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; /** This class represents the Dirac gammaL object which behaves like * 1/2 (1+gamma5). */ class diracgammaR : public tensor { GINAC_DECLARE_REGISTERED_CLASS(diracgammaR, tensor) // functions overriding virtual functions from base classes ex conjugate() const; // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; void do_print_latex(const print_latex & c, unsigned level) const; }; // global functions /** Specialization of is_exactly_a(obj) for clifford objects. */ template<> inline bool is_exactly_a(const basic & obj) { return obj.tinfo()==TINFO_clifford; } /** Create a Clifford unity object. * * @param rl Representation label * @return newly constructed object */ ex dirac_ONE(unsigned char rl = 0); /** Create a Clifford unit object. * * @param mu Index (must be of class varidx or a derived class) * @param metr Metric (should be of class tensmetric or a derived class, or a symmetric matrix) * @param rl Representation label * @return newly constructed Clifford unit object */ ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0); /** Create a Dirac gamma object. * * @param mu Index (must be of class varidx or a derived class) * @param rl Representation label * @return newly constructed gamma object */ ex dirac_gamma(const ex & mu, unsigned char rl = 0); /** Create a Dirac gamma5 object. * * @param rl Representation label * @return newly constructed object */ ex dirac_gamma5(unsigned char rl = 0); /** Create a Dirac gammaL object. * * @param rl Representation label * @return newly constructed object */ ex dirac_gammaL(unsigned char rl = 0); /** Create a Dirac gammaR object. * * @param rl Representation label * @return newly constructed object */ ex dirac_gammaR(unsigned char rl = 0); /** Create a term of the form e_mu * gamma~mu with a unique index mu. * * @param e Original expression * @param dim Dimension of index * @param rl Representation label */ ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0); /** Calculate the trace of an expression containing gamma objects with * a specified representation label. The computed trace is a linear * functional that is equal to the usual trace only in D = 4 dimensions. * In particular, the functional is not always cyclic in D != 4 dimensions * when gamma5 is involved. * * @param e Expression to take the trace of * @param rl Representation label * @param trONE Expression to be returned as the trace of the unit matrix */ ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4); /** Bring all products of clifford objects in an expression into a canonical * order. This is not necessarily the most simple form but it will allow * to check two expressions for equality. */ ex canonicalize_clifford(const ex & e); /** Automorphism of the Clifford algebra, simply changes signs of all * clifford units. */ ex clifford_prime(const ex & e); /** Main anti-automorphism of the Clifford algebra: makes reversion * and changes signs of all clifford units. */ inline ex clifford_bar(const ex & e) { return clifford_prime(e.conjugate()); } /** Reversion of the Clifford algebra, coincides with the conjugate(). */ inline ex clifford_star(const ex & e) { return e.conjugate(); } ex delete_ONE(const ex &e); /** Calculation of the norm in the Clifford algebra. */ ex clifford_norm(const ex & e); /** Calculation of the inverse in the Clifford algebra. */ ex clifford_inverse(const ex & e); /** List or vector conversion into the Clifford vector. * * @param v List or vector of coordinates * @param mu Index (must be of class varidx or a derived class) * @param metr Metric (should be of class tensmetric or a derived class, or a symmetric matrix) * @param rl Representation label * @return Clifford vector with given components */ ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr, unsigned char rl = 0); } // namespace GiNaC #endif // ndef __GINAC_CLIFFORD_H__