/** @file clifford.cpp * * Implementation of GiNaC's clifford algebra (Dirac gamma) objects. */ /* * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "clifford.h" #include "ex.h" #include "idx.h" #include "ncmul.h" #include "symbol.h" #include "numeric.h" // for I #include "symmetry.h" #include "lst.h" #include "relational.h" #include "operators.h" #include "mul.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(clifford, indexed, print_func(&clifford::do_print_dflt). print_func(&clifford::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracone, tensor, print_func(&diracone::do_print). print_func(&diracone::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgamma, tensor, print_func(&diracgamma::do_print). print_func(&diracgamma::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgamma5, tensor, print_func(&diracgamma5::do_print). print_func(&diracgamma5::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgammaL, tensor, print_func(&diracgammaL::do_print). print_func(&diracgammaL::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgammaR, tensor, print_func(&diracgammaR::do_print). print_func(&diracgammaR::do_print_latex)) ////////// // default constructors ////////// clifford::clifford() : representation_label(0) { tinfo_key = TINFO_clifford; } DEFAULT_CTOR(diracone) DEFAULT_CTOR(diracgamma) DEFAULT_CTOR(diracgamma5) DEFAULT_CTOR(diracgammaL) DEFAULT_CTOR(diracgammaR) ////////// // other constructors ////////// /** Construct object without any indices. This constructor is for internal * use only. Use the dirac_ONE() function instead. * @see dirac_ONE */ clifford::clifford(const ex & b, unsigned char rl) : inherited(b), representation_label(rl) { tinfo_key = TINFO_clifford; } /** Construct object with one Lorentz index. This constructor is for internal * use only. Use the dirac_gamma() function instead. * @see dirac_gamma */ clifford::clifford(const ex & b, const ex & mu, unsigned char rl) : inherited(b, mu), representation_label(rl) { GINAC_ASSERT(is_a(mu)); tinfo_key = TINFO_clifford; } clifford::clifford(unsigned char rl, const exvector & v, bool discardable) : inherited(sy_none(), v, discardable), representation_label(rl) { tinfo_key = TINFO_clifford; } clifford::clifford(unsigned char rl, exvector * vp) : inherited(sy_none(), vp), representation_label(rl) { tinfo_key = TINFO_clifford; } ////////// // archiving ////////// clifford::clifford(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) { unsigned rl; n.find_unsigned("label", rl); representation_label = rl; } void clifford::archive(archive_node &n) const { inherited::archive(n); n.add_unsigned("label", representation_label); } DEFAULT_UNARCHIVE(clifford) DEFAULT_ARCHIVING(diracone) DEFAULT_ARCHIVING(diracgamma) DEFAULT_ARCHIVING(diracgamma5) DEFAULT_ARCHIVING(diracgammaL) DEFAULT_ARCHIVING(diracgammaR) ////////// // functions overriding virtual functions from base classes ////////// int clifford::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const clifford &o = static_cast(other); if (representation_label != o.representation_label) { // different representation label return representation_label < o.representation_label ? -1 : 1; } return inherited::compare_same_type(other); } bool clifford::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const clifford &o = static_cast(other); return representation_label == o.representation_label; } static bool is_dirac_slash(const ex & seq0) { return !is_a(seq0) && !is_a(seq0) && !is_a(seq0) && !is_a(seq0) && !is_a(seq0); } void clifford::do_print_dflt(const print_dflt & c, unsigned level) const { // dirac_slash() object is printed differently if (is_dirac_slash(seq[0])) { seq[0].print(c, level); c.s << "\\"; } else this->print_dispatch(c, level); } void clifford::do_print_latex(const print_latex & c, unsigned level) const { // dirac_slash() object is printed differently if (is_dirac_slash(seq[0])) { c.s << "{"; seq[0].print(c, level); c.s << "\\hspace{-1.0ex}/}"; } else this->print_dispatch(c, level); } DEFAULT_COMPARE(diracone) DEFAULT_COMPARE(diracgamma) DEFAULT_COMPARE(diracgamma5) DEFAULT_COMPARE(diracgammaL) DEFAULT_COMPARE(diracgammaR) DEFAULT_PRINT_LATEX(diracone, "ONE", "\\mathbb{1}") DEFAULT_PRINT_LATEX(diracgamma, "gamma", "\\gamma") DEFAULT_PRINT_LATEX(diracgamma5, "gamma5", "{\\gamma^5}") DEFAULT_PRINT_LATEX(diracgammaL, "gammaL", "{\\gamma_L}") DEFAULT_PRINT_LATEX(diracgammaR, "gammaR", "{\\gamma_R}") /** This function decomposes gamma~mu -> (1, mu) and a\ -> (a.ix, ix) */ static void base_and_index(const ex & c, ex & b, ex & i) { GINAC_ASSERT(is_a(c)); GINAC_ASSERT(c.nops() == 2); if (is_a(c.op(0))) { // proper dirac gamma object i = c.op(1); b = _ex1; } else if (is_a(c.op(0)) || is_a(c.op(0)) || is_a(c.op(0))) { // gamma5/L/R i = _ex0; b = _ex1; } else { // slash object, generate new dummy index varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to(c.op(1)).get_dim()); b = indexed(c.op(0), ix.toggle_variance()); i = ix; } } /** Contraction of a gamma matrix with something else. */ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(is_a(self->op(0))); unsigned char rl = ex_to(*self).get_representation_label(); ex dim = ex_to(self->op(1)).get_dim(); if (other->nops() > 1) dim = minimal_dim(dim, ex_to(other->op(1)).get_dim()); if (is_a(*other)) { // Contraction only makes sense if the represenation labels are equal if (ex_to(*other).get_representation_label() != rl) return false; // gamma~mu gamma.mu = dim ONE if (other - self == 1) { *self = dim; *other = dirac_ONE(rl); return true; // gamma~mu gamma~alpha gamma.mu = (2-dim) gamma~alpha } else if (other - self == 2 && is_a(self[1])) { *self = 2 - dim; *other = _ex1; return true; // gamma~mu gamma~alpha gamma~beta gamma.mu = 4 g~alpha~beta + (dim-4) gamam~alpha gamma~beta } else if (other - self == 3 && is_a(self[1]) && is_a(self[2])) { ex b1, i1, b2, i2; base_and_index(self[1], b1, i1); base_and_index(self[2], b2, i2); *self = 4 * lorentz_g(i1, i2) * b1 * b2 * dirac_ONE(rl) + (dim - 4) * self[1] * self[2]; self[1] = _ex1; self[2] = _ex1; *other = _ex1; return true; // gamma~mu gamma~alpha gamma~beta gamma~delta gamma.mu = -2 gamma~delta gamma~beta gamma~alpha - (dim-4) gamam~alpha gamma~beta gamma~delta } else if (other - self == 4 && is_a(self[1]) && is_a(self[2]) && is_a(self[3])) { *self = -2 * self[3] * self[2] * self[1] - (dim - 4) * self[1] * self[2] * self[3]; self[1] = _ex1; self[2] = _ex1; self[3] = _ex1; *other = _ex1; return true; // gamma~mu S gamma~alpha gamma.mu = 2 gamma~alpha S - gamma~mu S gamma.mu gamma~alpha // (commutate contracted indices towards each other, simplify_indexed() // will re-expand and re-run the simplification) } else { exvector::iterator it = self + 1, next_to_last = other - 1; while (it != other) { if (!is_a(*it)) return false; ++it; } it = self + 1; ex S = _ex1; while (it != next_to_last) { S *= *it; *it++ = _ex1; } *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last); *next_to_last = _ex1; *other = _ex1; return true; } } else if (is_a(other->op(0)) && other->nops() == 2) { // x.mu gamma~mu -> x-slash *self = dirac_slash(other->op(0), dim, rl); *other = _ex1; return true; } return false; } /** Perform automatic simplification on noncommutative product of clifford * objects. This removes superfluous ONEs, permutes gamma5/L/R's to the front * and removes squares of gamma objects. */ ex clifford::eval_ncmul(const exvector & v) const { exvector s; s.reserve(v.size()); // Remove superfluous ONEs exvector::const_iterator cit = v.begin(), citend = v.end(); while (cit != citend) { if (!is_a(*cit) || !is_a(cit->op(0))) s.push_back(*cit); cit++; } bool something_changed = false; int sign = 1; // Anticommute gamma5/L/R's to the front if (s.size() >= 2) { exvector::iterator first = s.begin(), next_to_last = s.end() - 2; while (true) { exvector::iterator it = next_to_last; while (true) { exvector::iterator it2 = it + 1; if (is_a(*it) && is_a(*it2)) { ex e1 = it->op(0), e2 = it2->op(0); if (is_a(e2)) { if (is_a(e1) || is_a(e1)) { // gammaL/R gamma5 -> gamma5 gammaL/R it->swap(*it2); something_changed = true; } else if (!is_a(e1)) { // gamma5 gamma5 -> gamma5 gamma5 (do nothing) // x gamma5 -> -gamma5 x it->swap(*it2); sign = -sign; something_changed = true; } } else if (is_a(e2)) { if (is_a(e1)) { // gammaR gammaL -> 0 return _ex0; } else if (!is_a(e1) && !is_a(e1)) { // gammaL gammaL -> gammaL gammaL (do nothing) // gamma5 gammaL -> gamma5 gammaL (do nothing) // x gammaL -> gammaR x it->swap(*it2); *it = clifford(diracgammaR(), ex_to(*it).get_representation_label()); something_changed = true; } } else if (is_a(e2)) { if (is_a(e1)) { // gammaL gammaR -> 0 return _ex0; } else if (!is_a(e1) && !is_a(e1)) { // gammaR gammaR -> gammaR gammaR (do nothing) // gamma5 gammaR -> gamma5 gammaR (do nothing) // x gammaR -> gammaL x it->swap(*it2); *it = clifford(diracgammaL(), ex_to(*it).get_representation_label()); something_changed = true; } } } if (it == first) break; --it; } if (next_to_last == first) break; --next_to_last; } } // Remove equal adjacent gammas if (s.size() >= 2) { exvector::iterator it, itend = s.end() - 1; for (it = s.begin(); it != itend; ++it) { ex & a = it[0]; ex & b = it[1]; if (!is_a(a) || !is_a(b)) continue; const ex & ag = a.op(0); const ex & bg = b.op(0); bool a_is_diracgamma = is_a(ag); bool b_is_diracgamma = is_a(bg); if (a_is_diracgamma && b_is_diracgamma) { const ex & ia = a.op(1); const ex & ib = b.op(1); if (ia.is_equal(ib)) { // gamma~alpha gamma~alpha -> g~alpha~alpha a = lorentz_g(ia, ib); b = dirac_ONE(representation_label); something_changed = true; } } else if ((is_a(ag) && is_a(bg))) { // Remove squares of gamma5 a = dirac_ONE(representation_label); b = dirac_ONE(representation_label); something_changed = true; } else if ((is_a(ag) && is_a(bg)) || (is_a(ag) && is_a(bg))) { // Remove squares of gammaL/R b = dirac_ONE(representation_label); something_changed = true; } else if (is_a(ag) && is_a(bg)) { // gammaL and gammaR are orthogonal return _ex0; } else if (is_a(ag) && is_a(bg)) { // gamma5 gammaL -> -gammaL a = dirac_ONE(representation_label); sign = -sign; something_changed = true; } else if (is_a(ag) && is_a(bg)) { // gamma5 gammaR -> gammaR a = dirac_ONE(representation_label); something_changed = true; } else if (!a_is_diracgamma && !b_is_diracgamma && ag.is_equal(bg)) { // a\ a\ -> a^2 varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to(a.op(1)).minimal_dim(ex_to(b.op(1)))); a = indexed(ag, ix) * indexed(ag, ix.toggle_variance()); b = dirac_ONE(representation_label); something_changed = true; } } } if (s.empty()) return clifford(diracone(), representation_label) * sign; if (something_changed) return reeval_ncmul(s) * sign; else return hold_ncmul(s) * sign; } ex clifford::thiscontainer(const exvector & v) const { return clifford(representation_label, v); } ex clifford::thiscontainer(exvector * vp) const { return clifford(representation_label, vp); } ////////// // global functions ////////// ex dirac_ONE(unsigned char rl) { return clifford(diracone(), rl); } ex dirac_gamma(const ex & mu, unsigned char rl) { if (!is_a(mu)) throw(std::invalid_argument("index of Dirac gamma must be of type varidx")); return clifford(diracgamma(), mu, rl); } ex dirac_gamma5(unsigned char rl) { return clifford(diracgamma5(), rl); } ex dirac_gammaL(unsigned char rl) { return clifford(diracgammaL(), rl); } ex dirac_gammaR(unsigned char rl) { return clifford(diracgammaR(), rl); } ex dirac_slash(const ex & e, const ex & dim, unsigned char rl) { // Slashed vectors are actually stored as a clifford object with the // vector as its base expression and a (dummy) index that just serves // for storing the space dimensionality return clifford(e, varidx(0, dim), rl); } /** Check whether a given tinfo key (as returned by return_type_tinfo() * is that of a clifford object with the specified representation label. */ static bool is_clifford_tinfo(unsigned ti, unsigned char rl) { return ti == (TINFO_clifford + rl); } /** Check whether a given tinfo key (as returned by return_type_tinfo() * is that of a clifford object (with an arbitrary representation label). */ static bool is_clifford_tinfo(unsigned ti) { return (ti & ~0xff) == TINFO_clifford; } /** Take trace of a string of an even number of Dirac gammas given a vector * of indices. */ static ex trace_string(exvector::const_iterator ix, size_t num) { // Tr gamma.mu gamma.nu = 4 g.mu.nu if (num == 2) return lorentz_g(ix[0], ix[1]); // Tr gamma.mu gamma.nu gamma.rho gamma.sig = 4 (g.mu.nu g.rho.sig + g.nu.rho g.mu.sig - g.mu.rho g.nu.sig ) else if (num == 4) return lorentz_g(ix[0], ix[1]) * lorentz_g(ix[2], ix[3]) + lorentz_g(ix[1], ix[2]) * lorentz_g(ix[0], ix[3]) - lorentz_g(ix[0], ix[2]) * lorentz_g(ix[1], ix[3]); // Traces of 6 or more gammas are computed recursively: // Tr gamma.mu1 gamma.mu2 ... gamma.mun = // + g.mu1.mu2 * Tr gamma.mu3 ... gamma.mun // - g.mu1.mu3 * Tr gamma.mu2 gamma.mu4 ... gamma.mun // + g.mu1.mu4 * Tr gamma.mu3 gamma.mu3 gamma.mu5 ... gamma.mun // - ... // + g.mu1.mun * Tr gamma.mu2 ... gamma.mu(n-1) exvector v(num - 2); int sign = 1; ex result; for (size_t i=1; i(e)) { if (!ex_to(e).get_representation_label() == rl) return _ex0; const ex & g = e.op(0); if (is_a(g)) return trONE; else if (is_a(g) || is_a(g)) return trONE/2; else return _ex0; } else if (is_exactly_a(e)) { // Trace of product: pull out non-clifford factors ex prod = _ex1; for (size_t i=0; i(e)) { if (!is_clifford_tinfo(e.return_type_tinfo(), rl)) return _ex0; // Substitute gammaL/R and expand product, if necessary ex e_expanded = e.subs(lst( dirac_gammaL(rl) == (dirac_ONE(rl)-dirac_gamma5(rl))/2, dirac_gammaR(rl) == (dirac_ONE(rl)+dirac_gamma5(rl))/2 ), subs_options::no_pattern).expand(); if (!is_a(e_expanded)) return dirac_trace(e_expanded, rl, trONE); // gamma5 gets moved to the front so this check is enough bool has_gamma5 = is_a(e.op(0).op(0)); size_t num = e.nops(); if (has_gamma5) { // Trace of gamma5 * odd number of gammas and trace of // gamma5 * gamma.mu * gamma.nu are zero if ((num & 1) == 0 || num == 3) return _ex0; // Tr gamma5 gamma.mu gamma.nu gamma.rho gamma.sigma = 4I * epsilon(mu, nu, rho, sigma) // (the epsilon is always 4-dimensional) if (num == 5) { ex b1, i1, b2, i2, b3, i3, b4, i4; base_and_index(e.op(1), b1, i1); base_and_index(e.op(2), b2, i2); base_and_index(e.op(3), b3, i3); base_and_index(e.op(4), b4, i4); return trONE * I * (lorentz_eps(ex_to(i1).replace_dim(_ex4), ex_to(i2).replace_dim(_ex4), ex_to(i3).replace_dim(_ex4), ex_to(i4).replace_dim(_ex4)) * b1 * b2 * b3 * b4).simplify_indexed(); } // Tr gamma5 S_2k = // I/4! * epsilon0123.mu1.mu2.mu3.mu4 * Tr gamma.mu1 gamma.mu2 gamma.mu3 gamma.mu4 S_2k // (the epsilon is always 4-dimensional) exvector ix(num-1), bv(num-1); for (size_t i=1; i(idx1).replace_dim(_ex4), ex_to(idx2).replace_dim(_ex4), ex_to(idx3).replace_dim(_ex4), ex_to(idx4).replace_dim(_ex4)) * trace_string(v.begin(), num - 4); } } } } delete[] iv; return trONE * I * result * mul(bv); } else { // no gamma5 // Trace of odd number of gammas is zero if ((num & 1) == 1) return _ex0; // Tr gamma.mu gamma.nu = 4 g.mu.nu if (num == 2) { ex b1, i1, b2, i2; base_and_index(e.op(0), b1, i1); base_and_index(e.op(1), b2, i2); return trONE * (lorentz_g(i1, i2) * b1 * b2).simplify_indexed(); } exvector iv(num), bv(num); for (size_t i=0; i 0) { // Trace maps to all other container classes (this includes sums) pointer_to_map_function_2args fcn(dirac_trace, rl, trONE); return e.map(fcn); } else return _ex0; } ex canonicalize_clifford(const ex & e) { // Scan for any ncmul objects lst srl; ex aux = e.to_rational(srl); for (size_t i=0; i(rhs) && rhs.return_type() == return_types::noncommutative && is_clifford_tinfo(rhs.return_type_tinfo())) { // Expand product, if necessary ex rhs_expanded = rhs.expand(); if (!is_a(rhs_expanded)) { srl[i] = (lhs == canonicalize_clifford(rhs_expanded)); continue; } else if (!is_a(rhs.op(0))) continue; exvector v; v.reserve(rhs.nops()); for (size_t j=0; j(it->op(0)) || is_a(it->op(0)) || is_a(it->op(0))) ++it; while (it != next_to_last) { if (it[0].compare(it[1]) > 0) { ex save0 = it[0], save1 = it[1]; ex b1, i1, b2, i2; base_and_index(it[0], b1, i1); base_and_index(it[1], b2, i2); it[0] = (lorentz_g(i1, i2) * b1 * b2).simplify_indexed(); it[1] = _ex2; ex sum = ncmul(v); it[0] = save1; it[1] = save0; sum -= ncmul(v, true); srl[i] = (lhs == canonicalize_clifford(sum)); goto next_sym; } ++it; } next_sym: ; } } return aux.subs(srl, subs_options::no_pattern).simplify_indexed(); } } // namespace GiNaC