/** @file clifford.cpp * * Implementation of GiNaC's clifford algebra (Dirac gamma) objects. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "clifford.h" #include "ex.h" #include "idx.h" #include "ncmul.h" #include "symbol.h" #include "numeric.h" // for I #include "lst.h" #include "relational.h" #include "print.h" #include "archive.h" #include "debugmsg.h" #include "utils.h" #include namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(clifford, indexed) GINAC_IMPLEMENT_REGISTERED_CLASS(diracone, tensor) GINAC_IMPLEMENT_REGISTERED_CLASS(diracgamma, tensor) GINAC_IMPLEMENT_REGISTERED_CLASS(diracgamma5, tensor) ////////// // default constructor, destructor, copy constructor assignment operator and helpers ////////// clifford::clifford() : representation_label(0) { debugmsg("clifford default constructor", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_clifford; } void clifford::copy(const clifford & other) { inherited::copy(other); representation_label = other.representation_label; } DEFAULT_DESTROY(clifford) DEFAULT_CTORS(diracone) DEFAULT_CTORS(diracgamma) DEFAULT_CTORS(diracgamma5) ////////// // other constructors ////////// /** Construct object without any indices. This constructor is for internal * use only. Use the dirac_ONE() function instead. * @see dirac_ONE */ clifford::clifford(const ex & b, unsigned char rl) : inherited(b), representation_label(rl) { debugmsg("clifford constructor from ex", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_clifford; } /** Construct object with one Lorentz index. This constructor is for internal * use only. Use the dirac_gamma() function instead. * @see dirac_gamma */ clifford::clifford(const ex & b, const ex & mu, unsigned char rl) : inherited(b, mu), representation_label(rl) { debugmsg("clifford constructor from ex,ex", LOGLEVEL_CONSTRUCT); GINAC_ASSERT(is_ex_of_type(mu, varidx)); tinfo_key = TINFO_clifford; } clifford::clifford(unsigned char rl, const exvector & v, bool discardable) : inherited(indexed::unknown, v, discardable), representation_label(rl) { debugmsg("clifford constructor from unsigned char,exvector", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_clifford; } clifford::clifford(unsigned char rl, exvector * vp) : inherited(indexed::unknown, vp), representation_label(rl) { debugmsg("clifford constructor from unsigned char,exvector *", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_clifford; } ////////// // archiving ////////// clifford::clifford(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("clifford constructor from archive_node", LOGLEVEL_CONSTRUCT); unsigned rl; n.find_unsigned("label", rl); representation_label = rl; } void clifford::archive(archive_node &n) const { inherited::archive(n); n.add_unsigned("label", representation_label); } DEFAULT_UNARCHIVE(clifford) DEFAULT_ARCHIVING(diracone) DEFAULT_ARCHIVING(diracgamma) DEFAULT_ARCHIVING(diracgamma5) ////////// // functions overriding virtual functions from bases classes ////////// int clifford::compare_same_type(const basic & other) const { GINAC_ASSERT(other.tinfo() == TINFO_clifford); const clifford &o = static_cast(other); if (representation_label != o.representation_label) { // different representation label return representation_label < o.representation_label ? -1 : 1; } return inherited::compare_same_type(other); } DEFAULT_COMPARE(diracone) DEFAULT_COMPARE(diracgamma) DEFAULT_COMPARE(diracgamma5) DEFAULT_PRINT_LATEX(diracone, "ONE", "\\mathbb{1}") DEFAULT_PRINT_LATEX(diracgamma, "gamma", "\\gamma") DEFAULT_PRINT_LATEX(diracgamma5, "gamma5", "{\\gamma^5}") /** Contraction of a gamma matrix with something else. */ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_ex_of_type(*self, clifford)); GINAC_ASSERT(is_ex_of_type(*other, indexed)); GINAC_ASSERT(is_ex_of_type(self->op(0), diracgamma)); unsigned char rl = ex_to_clifford(*self).get_representation_label(); if (is_ex_of_type(*other, clifford)) { ex dim = ex_to_idx(self->op(1)).get_dim(); // gamma~mu gamma.mu = dim ONE if (other - self == 1) { *self = dim; *other = dirac_ONE(rl); return true; // gamma~mu gamma~alpha gamma.mu = (2-dim) gamma~alpha } else if (other - self == 2 && is_ex_of_type(self[1], clifford)) { *self = 2 - dim; *other = _ex1(); return true; // gamma~mu gamma~alpha gamma~beta gamma.mu = 4 g~alpha~beta + (dim-4) gamam~alpha gamma~beta } else if (other - self == 3 && is_ex_of_type(self[1], clifford) && is_ex_of_type(self[2], clifford)) { *self = 4 * lorentz_g(self[1].op(1), self[2].op(1)) * dirac_ONE(rl) + (dim - 4) * self[1] * self[2]; self[1] = _ex1(); self[2] = _ex1(); *other = _ex1(); return true; // gamma~mu S gamma~alpha gamma.mu = 2 gamma~alpha S - gamma~mu S gamma.mu gamma~alpha // (commutate contracted indices towards each other, simplify_indexed() // will re-expand and re-run the simplification) } else { exvector::iterator it = self + 1, next_to_last = other - 1; while (it != other) { if (!is_ex_of_type(*it, clifford)) return false; it++; } it = self + 1; ex S = _ex1(); while (it != next_to_last) { S *= *it; *it++ = _ex1(); } *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last); *next_to_last = _ex1(); *other = _ex1(); return true; } } return false; } /** Perform automatic simplification on noncommutative product of clifford * objects. This removes superfluous ONEs, permutes gamma5's to the front * and removes squares of gamma objects. */ ex clifford::simplify_ncmul(const exvector & v) const { exvector s; s.reserve(v.size()); // Remove superfluous ONEs exvector::const_iterator cit = v.begin(), citend = v.end(); while (cit != citend) { if (!is_ex_of_type(cit->op(0), diracone)) s.push_back(*cit); cit++; } bool something_changed = false; int sign = 1; // Anticommute gamma5's to the front if (s.size() >= 2) { exvector::iterator first = s.begin(), next_to_last = s.end() - 2; while (true) { exvector::iterator it = next_to_last; while (true) { exvector::iterator it2 = it + 1; if (!is_ex_of_type(it->op(0), diracgamma5) && is_ex_of_type(it2->op(0), diracgamma5)) { it->swap(*it2); sign = -sign; something_changed = true; } if (it == first) break; it--; } if (next_to_last == first) break; next_to_last--; } } // Remove squares of gamma5 while (s.size() >= 2 && is_ex_of_type(s[0].op(0), diracgamma5) && is_ex_of_type(s[1].op(0), diracgamma5)) { s.erase(s.begin(), s.begin() + 2); something_changed = true; } // Remove equal adjacent gammas if (s.size() >= 2) { exvector::iterator it = s.begin(), itend = s.end() - 1; while (it != itend) { ex & a = it[0]; ex & b = it[1]; if (is_ex_of_type(a.op(0), diracgamma) && is_ex_of_type(b.op(0), diracgamma)) { const ex & ia = a.op(1); const ex & ib = b.op(1); if (ia.is_equal(ib)) { a = lorentz_g(ia, ib); b = dirac_ONE(representation_label); something_changed = true; } } it++; } } if (s.size() == 0) return clifford(diracone(), representation_label) * sign; if (something_changed) return nonsimplified_ncmul(s) * sign; else return simplified_ncmul(s) * sign; } ex clifford::thisexprseq(const exvector & v) const { return clifford(representation_label, v); } ex clifford::thisexprseq(exvector * vp) const { return clifford(representation_label, vp); } ////////// // global functions ////////// ex dirac_ONE(unsigned char rl) { return clifford(diracone(), rl); } ex dirac_gamma(const ex & mu, unsigned char rl) { if (!is_ex_of_type(mu, varidx)) throw(std::invalid_argument("index of Dirac gamma must be of type varidx")); return clifford(diracgamma(), mu, rl); } ex dirac_gamma5(unsigned char rl) { return clifford(diracgamma5(), rl); } ex dirac_gamma6(unsigned char rl) { return clifford(diracone(), rl) + clifford(diracgamma5(), rl); } ex dirac_gamma7(unsigned char rl) { return clifford(diracone(), rl) - clifford(diracgamma5(), rl); } ex dirac_slash(const ex & e, const ex & dim, unsigned char rl) { varidx mu((new symbol)->setflag(status_flags::dynallocated), dim); return indexed(e, mu.toggle_variance()) * dirac_gamma(mu, rl); } /** Check whether a given tinfo key (as returned by return_type_tinfo() * is that of a clifford object with the specified representation label. */ static bool is_clifford_tinfo(unsigned ti, unsigned char rl) { return ti == (TINFO_clifford + rl); } /** Check whether a given tinfo key (as returned by return_type_tinfo() * is that of a clifford object (with an arbitrary representation label). */ static bool is_clifford_tinfo(unsigned ti) { return (ti & ~0xff) == TINFO_clifford; } /** Take trace of a string of an even number of Dirac gammas given a vector * of indices. */ static ex trace_string(exvector::const_iterator ix, unsigned num) { // Tr gamma.mu gamma.nu = 4 g.mu.nu if (num == 2) return lorentz_g(ix[0], ix[1]); // Tr gamma.mu gamma.nu gamma.rho gamma.sig = 4 (g.mu.nu g.rho.sig + g.nu.rho g.mu.sig - g.mu.rho g.nu.sig else if (num == 4) return lorentz_g(ix[0], ix[1]) * lorentz_g(ix[2], ix[3]) + lorentz_g(ix[1], ix[2]) * lorentz_g(ix[0], ix[3]) - lorentz_g(ix[0], ix[2]) * lorentz_g(ix[1], ix[3]); // Traces of 6 or more gammas are computed recursively: // Tr gamma.mu1 gamma.mu2 ... gamma.mun = // + g.mu1.mu2 * Tr gamma.mu3 ... gamma.mun // - g.mu1.mu3 * Tr gamma.mu2 gamma.mu4 ... gamma.mun // + g.mu1.mu4 * Tr gamma.mu3 gamma.mu3 gamma.mu5 ... gamma.mun // - ... // + g.mu1.mun * Tr gamma.mu2 ... gamma.mu(n-1) exvector v(num - 2); int sign = 1; ex result; for (int i=1; iop(0), diracgamma5)) it++; while (it != next_to_last) { if (it[0].op(1).compare(it[1].op(1)) > 0) { ex save0 = it[0], save1 = it[1]; it[0] = lorentz_g(it[0].op(1), it[1].op(1)); it[1] = _ex2(); ex sum = ncmul(v); it[0] = save1; it[1] = save0; sum -= ncmul(v, true); srl.let_op(i) = (lhs == canonicalize_clifford(sum)); goto next_sym; } it++; } next_sym: ; } } return aux.subs(srl); } } // namespace GiNaC