/** @file clifford.cpp * * Implementation of GiNaC's clifford algebra (Dirac gamma) objects. */ /* * GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "clifford.h" #include "ex.h" #include "idx.h" #include "ncmul.h" #include "symbol.h" #include "numeric.h" // for I #include "symmetry.h" #include "lst.h" #include "relational.h" #include "operators.h" #include "add.h" #include "mul.h" #include "power.h" #include "matrix.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(clifford, indexed, print_func(&clifford::do_print_dflt). print_func(&clifford::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracone, tensor, print_func(&diracone::do_print). print_func(&diracone::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(cliffordunit, tensor, print_func(&cliffordunit::do_print). print_func(&cliffordunit::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgamma, cliffordunit, print_func(&diracgamma::do_print). print_func(&diracgamma::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgamma5, tensor, print_func(&diracgamma5::do_print). print_func(&diracgamma5::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgammaL, tensor, print_func(&diracgammaL::do_print). print_func(&diracgammaL::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgammaR, tensor, print_func(&diracgammaR::do_print). print_func(&diracgammaR::do_print_latex)) ////////// // default constructors ////////// static ex default_metric() { static ex m = (new minkmetric)->setflag(status_flags::dynallocated); return m; } clifford::clifford() : representation_label(0), metric(default_metric()) { tinfo_key = TINFO_clifford; } DEFAULT_CTOR(diracone) DEFAULT_CTOR(cliffordunit) DEFAULT_CTOR(diracgamma) DEFAULT_CTOR(diracgamma5) DEFAULT_CTOR(diracgammaL) DEFAULT_CTOR(diracgammaR) ////////// // other constructors ////////// /** Construct object without any indices. This constructor is for internal * use only. Use the dirac_ONE() function instead. * @see dirac_ONE */ clifford::clifford(const ex & b, unsigned char rl) : inherited(b), representation_label(rl), metric(0) { tinfo_key = TINFO_clifford; } /** Construct object with one Lorentz index. This constructor is for internal * use only. Use the clifford_unit() or dirac_gamma() functions instead. * @see clifford_unit * @see dirac_gamma */ clifford::clifford(const ex & b, const ex & mu, const ex & metr, unsigned char rl) : inherited(b, mu), representation_label(rl), metric(metr) { GINAC_ASSERT(is_a(mu)); tinfo_key = TINFO_clifford; } clifford::clifford(unsigned char rl, const ex & metr, const exvector & v, bool discardable) : inherited(not_symmetric(), v, discardable), representation_label(rl), metric(metr) { tinfo_key = TINFO_clifford; } clifford::clifford(unsigned char rl, const ex & metr, std::auto_ptr vp) : inherited(not_symmetric(), vp), representation_label(rl), metric(metr) { tinfo_key = TINFO_clifford; } ////////// // archiving ////////// clifford::clifford(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) { unsigned rl; n.find_unsigned("label", rl); representation_label = rl; n.find_ex("metric", metric, sym_lst); } void clifford::archive(archive_node &n) const { inherited::archive(n); n.add_unsigned("label", representation_label); n.add_ex("metric", metric); } DEFAULT_UNARCHIVE(clifford) DEFAULT_ARCHIVING(diracone) DEFAULT_ARCHIVING(cliffordunit) DEFAULT_ARCHIVING(diracgamma) DEFAULT_ARCHIVING(diracgamma5) DEFAULT_ARCHIVING(diracgammaL) DEFAULT_ARCHIVING(diracgammaR) ////////// // functions overriding virtual functions from base classes ////////// ex clifford::get_metric(const ex & i, const ex & j) const { return indexed(metric, symmetric2(), i, j); } bool clifford::same_metric(const ex & other) const { if (is_a(other)) { return get_metric().is_equal(ex_to(other).get_metric()); } else if (is_a(other)) { return get_metric(other.op(1), other.op(2)).is_equal(other); } else return false; } int clifford::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const clifford &o = static_cast(other); if (representation_label != o.representation_label) { // different representation label return representation_label < o.representation_label ? -1 : 1; } return inherited::compare_same_type(other); } bool clifford::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const clifford &o = static_cast(other); return (representation_label == o.representation_label) && same_metric(o); } static bool is_dirac_slash(const ex & seq0) { return !is_a(seq0) && !is_a(seq0) && !is_a(seq0) && !is_a(seq0) && !is_a(seq0); } void clifford::do_print_dflt(const print_dflt & c, unsigned level) const { // dirac_slash() object is printed differently if (is_dirac_slash(seq[0])) { seq[0].print(c, level); c.s << "\\"; } else this->print_dispatch(c, level); } void clifford::do_print_latex(const print_latex & c, unsigned level) const { // dirac_slash() object is printed differently if (is_dirac_slash(seq[0])) { c.s << "{"; seq[0].print(c, level); c.s << "\\hspace{-1.0ex}/}"; } else this->print_dispatch(c, level); } DEFAULT_COMPARE(diracone) DEFAULT_COMPARE(cliffordunit) DEFAULT_COMPARE(diracgamma) DEFAULT_COMPARE(diracgamma5) DEFAULT_COMPARE(diracgammaL) DEFAULT_COMPARE(diracgammaR) DEFAULT_PRINT_LATEX(diracone, "ONE", "\\mathbb{1}") DEFAULT_PRINT_LATEX(cliffordunit, "e", "e") DEFAULT_PRINT_LATEX(diracgamma, "gamma", "\\gamma") DEFAULT_PRINT_LATEX(diracgamma5, "gamma5", "{\\gamma^5}") DEFAULT_PRINT_LATEX(diracgammaL, "gammaL", "{\\gamma_L}") DEFAULT_PRINT_LATEX(diracgammaR, "gammaR", "{\\gamma_R}") /** This function decomposes gamma~mu -> (1, mu) and a\ -> (a.ix, ix) */ static void base_and_index(const ex & c, ex & b, ex & i) { GINAC_ASSERT(is_a(c)); GINAC_ASSERT(c.nops() == 2); if (is_a(c.op(0))) { // proper dirac gamma object or clifford unit i = c.op(1); b = _ex1; } else if (is_a(c.op(0)) || is_a(c.op(0)) || is_a(c.op(0))) { // gamma5/L/R i = _ex0; b = _ex1; } else { // slash object, generate new dummy index varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to(c.op(1)).get_dim()); b = indexed(c.op(0), ix.toggle_variance()); i = ix; } } /** Predicate for finding non-clifford objects. */ struct is_not_a_clifford : public std::unary_function { bool operator()(const ex & e) { return !is_a(e); } }; /** Contraction of a gamma matrix with something else. */ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(is_a(self->op(0))); unsigned char rl = ex_to(*self).get_representation_label(); ex dim = ex_to(self->op(1)).get_dim(); if (other->nops() > 1) dim = minimal_dim(dim, ex_to(other->op(1)).get_dim()); if (is_a(*other)) { // Contraction only makes sense if the represenation labels are equal if (ex_to(*other).get_representation_label() != rl) return false; size_t num = other - self; // gamma~mu gamma.mu = dim ONE if (num == 1) { *self = dim; *other = dirac_ONE(rl); return true; // gamma~mu gamma~alpha gamma.mu = (2-dim) gamma~alpha } else if (num == 2 && is_a(self[1])) { *self = 2 - dim; *other = _ex1; return true; // gamma~mu gamma~alpha gamma~beta gamma.mu = 4 g~alpha~beta + (dim-4) gamam~alpha gamma~beta } else if (num == 3 && is_a(self[1]) && is_a(self[2])) { ex b1, i1, b2, i2; base_and_index(self[1], b1, i1); base_and_index(self[2], b2, i2); *self = 4 * lorentz_g(i1, i2) * b1 * b2 * dirac_ONE(rl) + (dim - 4) * self[1] * self[2]; self[1] = _ex1; self[2] = _ex1; *other = _ex1; return true; // gamma~mu gamma~alpha gamma~beta gamma~delta gamma.mu = -2 gamma~delta gamma~beta gamma~alpha - (dim-4) gamam~alpha gamma~beta gamma~delta } else if (num == 4 && is_a(self[1]) && is_a(self[2]) && is_a(self[3])) { *self = -2 * self[3] * self[2] * self[1] - (dim - 4) * self[1] * self[2] * self[3]; self[1] = _ex1; self[2] = _ex1; self[3] = _ex1; *other = _ex1; return true; // gamma~mu Sodd gamma.mu = -2 Sodd_R // (Chisholm identity in 4 dimensions) } else if (!((other - self) & 1) && dim.is_equal(4)) { if (std::find_if(self + 1, other, is_not_a_clifford()) != other) return false; *self = ncmul(exvector(std::reverse_iterator(other), std::reverse_iterator(self + 1)), true); std::fill(self + 1, other, _ex1); *other = _ex_2; return true; // gamma~mu Sodd gamma~alpha gamma.mu = 2 gamma~alpha Sodd + 2 Sodd_R gamma~alpha // (commutate contracted indices towards each other, then use // Chisholm identity in 4 dimensions) } else if (((other - self) & 1) && dim.is_equal(4)) { if (std::find_if(self + 1, other, is_not_a_clifford()) != other) return false; exvector::iterator next_to_last = other - 1; ex S = ncmul(exvector(self + 1, next_to_last), true); ex SR = ncmul(exvector(std::reverse_iterator(next_to_last), std::reverse_iterator(self + 1)), true); *self = (*next_to_last) * S + SR * (*next_to_last); std::fill(self + 1, other, _ex1); *other = _ex2; return true; // gamma~mu S gamma~alpha gamma.mu = 2 gamma~alpha S - gamma~mu S gamma.mu gamma~alpha // (commutate contracted indices towards each other, simplify_indexed() // will re-expand and re-run the simplification) } else { if (std::find_if(self + 1, other, is_not_a_clifford()) != other) return false; exvector::iterator next_to_last = other - 1; ex S = ncmul(exvector(self + 1, next_to_last), true); *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last); std::fill(self + 1, other + 1, _ex1); return true; } } else if (is_a(other->op(0)) && other->nops() == 2) { // x.mu gamma~mu -> x-slash *self = dirac_slash(other->op(0), dim, rl); *other = _ex1; return true; } return false; } /** An utility function looking for a given metric within an exvector, * used in cliffordunit::contract_with(). */ static int find_same_metric(exvector & v, ex & c) { for (int i=0; i(v[i]) && is_a(v[i]) && ex_to(c).same_metric(v[i]) && (ex_to(c.op(1)) == ex_to(v[i]).get_indices()[0] || ex_to(c.op(1)).toggle_variance() == ex_to(v[i]).get_indices()[0])) { return ++i; // next to found } } return 0; //nothing found } /** Contraction of a Clifford unit with something else. */ bool cliffordunit::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(is_a(self->op(0))); clifford unit = ex_to(*self); unsigned char rl = unit.get_representation_label(); if (is_a(*other)) { // Contraction only makes sense if the represenation labels are equal // and the metrics are the same if ((ex_to(*other).get_representation_label() != rl) && unit.same_metric(*other)) return false; // Find if a previous contraction produces the square of self int prev_square = find_same_metric(v, self[0]); varidx d((new symbol)->setflag(status_flags::dynallocated), ex_to(ex_to(self->op(1)).get_dim())); ex squared_metric = unit.get_metric(self->op(1), d) * unit.get_metric(d.toggle_variance(), other->op(1)); // e~mu e.mu = Tr ONE if (other - self == 1) { if (prev_square != 0) { *self = squared_metric; v[prev_square-1] = _ex1; } else *self = unit.get_metric(self->op(1), other->op(1)); *other = dirac_ONE(rl); return true; // e~mu e~alpha e.mu = (2e~alpha^2-Tr) e~alpha } else if (other - self == 2 && is_a(self[1])) { const ex & ia = self[1].op(1); const ex & ib = self[1].op(1); if (is_a(unit.get_metric())) *self = 2 - unit.get_metric(self->op(1), other->op(1)); else if (prev_square != 0) { *self = 2-squared_metric; v[prev_square-1] = _ex1; } else *self = 2*unit.get_metric(ia, ib) - unit.get_metric(self->op(1), other->op(1)); *other = _ex1; return true; // e~mu S e~alpha e.mu = 2 e~alpha^3 S - e~mu S e.mu e~alpha // (commutate contracted indices towards each other, simplify_indexed() // will re-expand and re-run the simplification) } else { exvector::iterator it = self + 1, next_to_last = other - 1; while (it != other) { if (!is_a(*it)) return false; ++it; } it = self + 1; ex S = _ex1; while (it != next_to_last) { S *= *it; *it++ = _ex1; } const ex & ia = next_to_last->op(1); const ex & ib = next_to_last->op(1); if (is_a(unit.get_metric())) *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last); else if (prev_square != 0) { *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last)*unit.get_metric(self->op(1),self->op(1)); v[prev_square-1] = _ex1; } else *self = 2 * (*next_to_last) * S* unit.get_metric(ia,ib) - (*self) * S * (*other) * (*next_to_last); *next_to_last = _ex1; *other = _ex1; return true; } } return false; } /** Perform automatic simplification on noncommutative product of clifford * objects. This removes superfluous ONEs, permutes gamma5/L/R's to the front * and removes squares of gamma objects. */ ex clifford::eval_ncmul(const exvector & v) const { exvector s; s.reserve(v.size()); // Remove superfluous ONEs exvector::const_iterator cit = v.begin(), citend = v.end(); while (cit != citend) { if (!is_a(*cit) || !is_a(cit->op(0))) s.push_back(*cit); cit++; } bool something_changed = false; int sign = 1; // Anticommutate gamma5/L/R's to the front if (s.size() >= 2) { exvector::iterator first = s.begin(), next_to_last = s.end() - 2; while (true) { exvector::iterator it = next_to_last; while (true) { exvector::iterator it2 = it + 1; if (is_a(*it) && is_a(*it2)) { ex e1 = it->op(0), e2 = it2->op(0); if (is_a(e2)) { if (is_a(e1) || is_a(e1)) { // gammaL/R gamma5 -> gamma5 gammaL/R it->swap(*it2); something_changed = true; } else if (!is_a(e1)) { // gamma5 gamma5 -> gamma5 gamma5 (do nothing) // x gamma5 -> -gamma5 x it->swap(*it2); sign = -sign; something_changed = true; } } else if (is_a(e2)) { if (is_a(e1)) { // gammaR gammaL -> 0 return _ex0; } else if (!is_a(e1) && !is_a(e1)) { // gammaL gammaL -> gammaL gammaL (do nothing) // gamma5 gammaL -> gamma5 gammaL (do nothing) // x gammaL -> gammaR x it->swap(*it2); *it = clifford(diracgammaR(), ex_to(*it).get_representation_label()); something_changed = true; } } else if (is_a(e2)) { if (is_a(e1)) { // gammaL gammaR -> 0 return _ex0; } else if (!is_a(e1) && !is_a(e1)) { // gammaR gammaR -> gammaR gammaR (do nothing) // gamma5 gammaR -> gamma5 gammaR (do nothing) // x gammaR -> gammaL x it->swap(*it2); *it = clifford(diracgammaL(), ex_to(*it).get_representation_label()); something_changed = true; } } } if (it == first) break; --it; } if (next_to_last == first) break; --next_to_last; } } // Remove equal adjacent gammas if (s.size() >= 2) { exvector::iterator it, itend = s.end() - 1; for (it = s.begin(); it != itend; ++it) { ex & a = it[0]; ex & b = it[1]; if (!is_a(a) || !is_a(b)) continue; const ex & ag = a.op(0); const ex & bg = b.op(0); bool a_is_cliffordunit = is_a(ag); bool b_is_cliffordunit = is_a(bg); if (a_is_cliffordunit && b_is_cliffordunit && ex_to(a).same_metric(b)) { const ex & ia = a.op(1); const ex & ib = b.op(1); if (ia.is_equal(ib)) { // gamma~alpha gamma~alpha -> g~alpha~alpha a = ex_to(a).get_metric(ia, ib); b = dirac_ONE(representation_label); something_changed = true; } } else if ((is_a(ag) && is_a(bg))) { // Remove squares of gamma5 a = dirac_ONE(representation_label); b = dirac_ONE(representation_label); something_changed = true; } else if ((is_a(ag) && is_a(bg)) || (is_a(ag) && is_a(bg))) { // Remove squares of gammaL/R b = dirac_ONE(representation_label); something_changed = true; } else if (is_a(ag) && is_a(bg)) { // gammaL and gammaR are orthogonal return _ex0; } else if (is_a(ag) && is_a(bg)) { // gamma5 gammaL -> -gammaL a = dirac_ONE(representation_label); sign = -sign; something_changed = true; } else if (is_a(ag) && is_a(bg)) { // gamma5 gammaR -> gammaR a = dirac_ONE(representation_label); something_changed = true; } else if (!a_is_cliffordunit && !b_is_cliffordunit && ag.is_equal(bg)) { // a\ a\ -> a^2 varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to(a.op(1)).minimal_dim(ex_to(b.op(1)))); a = indexed(ag, ix) * indexed(ag, ix.toggle_variance()); b = dirac_ONE(representation_label); something_changed = true; } } } if (s.empty()) return clifford(diracone(), representation_label) * sign; if (something_changed) return reeval_ncmul(s) * sign; else return hold_ncmul(s) * sign; } ex clifford::thiscontainer(const exvector & v) const { return clifford(representation_label, get_metric(), v); } ex clifford::thiscontainer(std::auto_ptr vp) const { return clifford(representation_label, get_metric(), vp); } ex diracgamma5::conjugate() const { return _ex_1 * (*this); } ex diracgammaL::conjugate() const { return (new diracgammaR)->setflag(status_flags::dynallocated); } ex diracgammaR::conjugate() const { return (new diracgammaL)->setflag(status_flags::dynallocated); } ////////// // global functions ////////// ex dirac_ONE(unsigned char rl) { static ex ONE = (new diracone)->setflag(status_flags::dynallocated); return clifford(ONE, rl); } ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl) { static ex unit = (new cliffordunit)->setflag(status_flags::dynallocated); if (!is_a(mu)) throw(std::invalid_argument("index of Clifford unit must be of type varidx")); return clifford(unit, mu, metr, rl); } ex dirac_gamma(const ex & mu, unsigned char rl) { static ex gamma = (new diracgamma)->setflag(status_flags::dynallocated); if (!is_a(mu)) throw(std::invalid_argument("index of Dirac gamma must be of type varidx")); return clifford(gamma, mu, default_metric(), rl); } ex dirac_gamma5(unsigned char rl) { static ex gamma5 = (new diracgamma5)->setflag(status_flags::dynallocated); return clifford(gamma5, rl); } ex dirac_gammaL(unsigned char rl) { static ex gammaL = (new diracgammaL)->setflag(status_flags::dynallocated); return clifford(gammaL, rl); } ex dirac_gammaR(unsigned char rl) { static ex gammaR = (new diracgammaR)->setflag(status_flags::dynallocated); return clifford(gammaR, rl); } ex dirac_slash(const ex & e, const ex & dim, unsigned char rl) { // Slashed vectors are actually stored as a clifford object with the // vector as its base expression and a (dummy) index that just serves // for storing the space dimensionality return clifford(e, varidx(0, dim), default_metric(), rl); } /** Check whether a given tinfo key (as returned by return_type_tinfo() * is that of a clifford object with the specified representation label. */ static bool is_clifford_tinfo(unsigned ti, unsigned char rl) { return ti == (TINFO_clifford + rl); } /** Check whether a given tinfo key (as returned by return_type_tinfo() * is that of a clifford object (with an arbitrary representation label). */ static bool is_clifford_tinfo(unsigned ti) { return (ti & ~0xff) == TINFO_clifford; } /** Extract representation label from tinfo key (as returned by * return_type_tinfo()). */ static unsigned char get_representation_label(unsigned ti) { return ti & 0xff; } /** Take trace of a string of an even number of Dirac gammas given a vector * of indices. */ static ex trace_string(exvector::const_iterator ix, size_t num) { // Tr gamma.mu gamma.nu = 4 g.mu.nu if (num == 2) return lorentz_g(ix[0], ix[1]); // Tr gamma.mu gamma.nu gamma.rho gamma.sig = 4 (g.mu.nu g.rho.sig + g.nu.rho g.mu.sig - g.mu.rho g.nu.sig ) else if (num == 4) return lorentz_g(ix[0], ix[1]) * lorentz_g(ix[2], ix[3]) + lorentz_g(ix[1], ix[2]) * lorentz_g(ix[0], ix[3]) - lorentz_g(ix[0], ix[2]) * lorentz_g(ix[1], ix[3]); // Traces of 6 or more gammas are computed recursively: // Tr gamma.mu1 gamma.mu2 ... gamma.mun = // + g.mu1.mu2 * Tr gamma.mu3 ... gamma.mun // - g.mu1.mu3 * Tr gamma.mu2 gamma.mu4 ... gamma.mun // + g.mu1.mu4 * Tr gamma.mu3 gamma.mu3 gamma.mu5 ... gamma.mun // - ... // + g.mu1.mun * Tr gamma.mu2 ... gamma.mu(n-1) exvector v(num - 2); int sign = 1; ex result; for (size_t i=1; i & rls, const ex & trONE) { if (is_a(e)) { unsigned char rl = ex_to(e).get_representation_label(); // Are we taking the trace over this object's representation label? if (rls.find(rl) == rls.end()) return e; // Yes, all elements are traceless, except for dirac_ONE and dirac_L/R const ex & g = e.op(0); if (is_a(g)) return trONE; else if (is_a(g) || is_a(g)) return trONE/2; else return _ex0; } else if (is_exactly_a(e)) { // Trace of product: pull out non-clifford factors ex prod = _ex1; for (size_t i=0; i(e)) { unsigned char rl = get_representation_label(e.return_type_tinfo()); // Are we taking the trace over this string's representation label? if (rls.find(rl) == rls.end()) return e; // Substitute gammaL/R and expand product, if necessary ex e_expanded = e.subs(lst( dirac_gammaL(rl) == (dirac_ONE(rl)-dirac_gamma5(rl))/2, dirac_gammaR(rl) == (dirac_ONE(rl)+dirac_gamma5(rl))/2 ), subs_options::no_pattern).expand(); if (!is_a(e_expanded)) return dirac_trace(e_expanded, rls, trONE); // gamma5 gets moved to the front so this check is enough bool has_gamma5 = is_a(e.op(0).op(0)); size_t num = e.nops(); if (has_gamma5) { // Trace of gamma5 * odd number of gammas and trace of // gamma5 * gamma.mu * gamma.nu are zero if ((num & 1) == 0 || num == 3) return _ex0; // Tr gamma5 gamma.mu gamma.nu gamma.rho gamma.sigma = 4I * epsilon(mu, nu, rho, sigma) // (the epsilon is always 4-dimensional) if (num == 5) { ex b1, i1, b2, i2, b3, i3, b4, i4; base_and_index(e.op(1), b1, i1); base_and_index(e.op(2), b2, i2); base_and_index(e.op(3), b3, i3); base_and_index(e.op(4), b4, i4); return trONE * I * (lorentz_eps(ex_to(i1).replace_dim(_ex4), ex_to(i2).replace_dim(_ex4), ex_to(i3).replace_dim(_ex4), ex_to(i4).replace_dim(_ex4)) * b1 * b2 * b3 * b4).simplify_indexed(); } // Tr gamma5 S_2k = // I/4! * epsilon0123.mu1.mu2.mu3.mu4 * Tr gamma.mu1 gamma.mu2 gamma.mu3 gamma.mu4 S_2k // (the epsilon is always 4-dimensional) exvector ix(num-1), bv(num-1); for (size_t i=1; i(idx1).replace_dim(_ex4), ex_to(idx2).replace_dim(_ex4), ex_to(idx3).replace_dim(_ex4), ex_to(idx4).replace_dim(_ex4)) * trace_string(v.begin(), num - 4); } } } } delete[] iv; return trONE * I * result * mul(bv); } else { // no gamma5 // Trace of odd number of gammas is zero if ((num & 1) == 1) return _ex0; // Tr gamma.mu gamma.nu = 4 g.mu.nu if (num == 2) { ex b1, i1, b2, i2; base_and_index(e.op(0), b1, i1); base_and_index(e.op(1), b2, i2); return trONE * (lorentz_g(i1, i2) * b1 * b2).simplify_indexed(); } exvector iv(num), bv(num); for (size_t i=0; i 0) { // Trace maps to all other container classes (this includes sums) pointer_to_map_function_2args &, const ex &> fcn(dirac_trace, rls, trONE); return e.map(fcn); } else return _ex0; } ex dirac_trace(const ex & e, const lst & rll, const ex & trONE) { // Convert list to set std::set rls; for (lst::const_iterator i = rll.begin(); i != rll.end(); ++i) { if (i->info(info_flags::nonnegint)) rls.insert(ex_to(*i).to_int()); } return dirac_trace(e, rls, trONE); } ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE) { // Convert label to set std::set rls; rls.insert(rl); return dirac_trace(e, rls, trONE); } ex canonicalize_clifford(const ex & e) { // Scan for any ncmul objects exmap srl; ex aux = e.to_rational(srl); for (exmap::iterator i = srl.begin(); i != srl.end(); ++i) { ex lhs = i->first; ex rhs = i->second; if (is_exactly_a(rhs) && rhs.return_type() == return_types::noncommutative && is_clifford_tinfo(rhs.return_type_tinfo())) { // Expand product, if necessary ex rhs_expanded = rhs.expand(); if (!is_a(rhs_expanded)) { i->second = canonicalize_clifford(rhs_expanded); continue; } else if (!is_a(rhs.op(0))) continue; exvector v; v.reserve(rhs.nops()); for (size_t j=0; j(it->op(0)) || is_a(it->op(0)) || is_a(it->op(0))) ++it; while (it != next_to_last) { if (it[0].compare(it[1]) > 0) { ex save0 = it[0], save1 = it[1]; ex b1, i1, b2, i2; base_and_index(it[0], b1, i1); base_and_index(it[1], b2, i2); it[0] = (ex_to(save0).get_metric(i1, i2) * b1 * b2).simplify_indexed(); it[1] = v.size() == 2 ? _ex2 * dirac_ONE(ex_to(it[1]).get_representation_label()) : _ex2; ex sum = ncmul(v); it[0] = save1; it[1] = save0; sum -= ncmul(v, true); i->second = canonicalize_clifford(sum); goto next_sym; } ++it; } next_sym: ; } } return aux.subs(srl, subs_options::no_pattern).simplify_indexed(); } ex clifford_prime(const ex &e) { pointer_to_map_function fcn(clifford_prime); if (is_a(e) && is_a(e.op(0))) { return -e; } else if (is_a(e)) { return e.map(fcn); } else if (is_a(e)) { return e.map(fcn); } else if (is_a(e)) { return pow(clifford_prime(e.op(0)), e.op(1)); } else return e; } ex delete_ONE(const ex &e) { pointer_to_map_function fcn(delete_ONE); if (is_a(e) && is_a(e.op(0))) { return 1; } else if (is_a(e)) { return e.map(fcn); } else if (is_a(e)) { return e.map(fcn); } else if (is_a(e)) { return e.map(fcn); } else if (is_a(e)) { return pow(delete_ONE(e.op(0)), e.op(1)); } else return e; } ex clifford_norm(const ex &e) { return sqrt(delete_ONE((e * clifford_bar(e)).simplify_indexed())); } ex clifford_inverse(const ex &e) { ex norm = clifford_norm(e); if (!norm.is_zero()) return clifford_bar(e) / pow(norm, 2); } ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr, unsigned char rl) { unsigned min, max; if (!ex_to(mu).is_dim_numeric()) throw(std::invalid_argument("Index should have a numeric dimension")); unsigned dim = (ex_to(ex_to(mu).get_dim())).to_int(); ex c = clifford_unit(mu, metr, rl); if (is_a(v)) { if (ex_to(v).cols() > ex_to(v).rows()) { min = ex_to(v).rows(); max = ex_to(v).cols(); } else { min = ex_to(v).cols(); max = ex_to(v).rows(); } if (min == 1) { if (dim == max) if (is_a(mu)) // need to swap variance return indexed(v, ex_to(mu).toggle_variance()) * c; else return indexed(v, mu) * c; else throw(std::invalid_argument("Dimensions of vector and clifford unit mismatch")); } else throw(std::invalid_argument("First argument should be a vector vector")); } else if (is_a(v)) { if (dim == ex_to(v).nops()) return indexed(matrix(dim, 1, ex_to(v)), ex_to(mu).toggle_variance()) * c; else throw(std::invalid_argument("List length and dimension of clifford unit mismatch")); } else throw(std::invalid_argument("Cannot construct from anything but list or vector")); } } // namespace GiNaC