/** @file clifford.cpp * * Implementation of GiNaC's clifford algebra (Dirac gamma) objects. */ /* * GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "clifford.h" #include "ex.h" #include "idx.h" #include "ncmul.h" #include "symbol.h" #include "numeric.h" // for I #include "symmetry.h" #include "lst.h" #include "relational.h" #include "operators.h" #include "add.h" #include "mul.h" #include "power.h" #include "matrix.h" #include "archive.h" #include "utils.h" #include namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(clifford, indexed, print_func(&clifford::do_print_dflt). print_func(&clifford::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracone, tensor, print_func(&diracone::do_print). print_func(&diracone::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(cliffordunit, tensor, print_func(&cliffordunit::do_print). print_func(&cliffordunit::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgamma, cliffordunit, print_func(&diracgamma::do_print). print_func(&diracgamma::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgamma5, tensor, print_func(&diracgamma5::do_print). print_func(&diracgamma5::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgammaL, tensor, print_func(&diracgammaL::do_print). print_func(&diracgammaL::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgammaR, tensor, print_func(&diracgammaR::do_print). print_func(&diracgammaR::do_print_latex)) ////////// // default constructors ////////// clifford::clifford() : representation_label(0), metric(0), commutator_sign(-1) { } DEFAULT_CTOR(diracone) DEFAULT_CTOR(cliffordunit) DEFAULT_CTOR(diracgamma) DEFAULT_CTOR(diracgamma5) DEFAULT_CTOR(diracgammaL) DEFAULT_CTOR(diracgammaR) ////////// // other constructors ////////// /** Construct object without any indices. This constructor is for internal * use only. Use the dirac_ONE() function instead. * @see dirac_ONE */ clifford::clifford(const ex & b, unsigned char rl) : inherited(b), representation_label(rl), metric(0), commutator_sign(-1) { } /** Construct object with one Lorentz index. This constructor is for internal * use only. Use the clifford_unit() or dirac_gamma() functions instead. * @see clifford_unit * @see dirac_gamma */ clifford::clifford(const ex & b, const ex & mu, const ex & metr, unsigned char rl, int comm_sign) : inherited(b, mu), representation_label(rl), metric(metr), commutator_sign(comm_sign) { GINAC_ASSERT(is_a(mu)); } clifford::clifford(unsigned char rl, const ex & metr, int comm_sign, const exvector & v, bool discardable) : inherited(not_symmetric(), v, discardable), representation_label(rl), metric(metr), commutator_sign(comm_sign) { } clifford::clifford(unsigned char rl, const ex & metr, int comm_sign, std::auto_ptr vp) : inherited(not_symmetric(), vp), representation_label(rl), metric(metr), commutator_sign(comm_sign) { } return_type_t clifford::return_type_tinfo() const { return make_return_type_t(representation_label); } ////////// // archiving ////////// void clifford::read_archive(const archive_node& n, lst& sym_lst) { inherited::read_archive(n, sym_lst); unsigned rl; n.find_unsigned("label", rl); representation_label = rl; n.find_ex("metric", metric, sym_lst); n.find_unsigned("commutator_sign+1", rl); commutator_sign = rl - 1; } void clifford::archive(archive_node & n) const { inherited::archive(n); n.add_unsigned("label", representation_label); n.add_ex("metric", metric); n.add_unsigned("commutator_sign+1", commutator_sign+1); } GINAC_BIND_UNARCHIVER(clifford); GINAC_BIND_UNARCHIVER(diracone); GINAC_BIND_UNARCHIVER(diracgamma); GINAC_BIND_UNARCHIVER(diracgamma5); GINAC_BIND_UNARCHIVER(diracgammaL); GINAC_BIND_UNARCHIVER(diracgammaR); ex clifford::get_metric(const ex & i, const ex & j, bool symmetrised) const { if (is_a(metric)) { if (symmetrised && !(ex_to(ex_to(metric).get_symmetry()).has_symmetry())) { if (is_a(metric.op(0))) { return indexed((ex_to(metric.op(0)).add(ex_to(metric.op(0)).transpose())).mul(numeric(1, 2)), symmetric2(), i, j); } else { return simplify_indexed(indexed(metric.op(0)*_ex1_2, i, j) + indexed(metric.op(0)*_ex1_2, j, i)); } } else { return metric.subs(lst(metric.op(1) == i, metric.op(2) == j), subs_options::no_pattern); } } else { exvector indices = metric.get_free_indices(); if (symmetrised) return _ex1_2*simplify_indexed(metric.subs(lst(indices[0] == i, indices[1] == j), subs_options::no_pattern) + metric.subs(lst(indices[0] == j, indices[1] == i), subs_options::no_pattern)); else return metric.subs(lst(indices[0] == i, indices[1] == j), subs_options::no_pattern); } } bool clifford::same_metric(const ex & other) const { ex metr; if (is_a(other)) metr = ex_to(other).get_metric(); else metr = other; if (is_a(metr)) return metr.op(0).is_equal(get_metric().op(0)); else { exvector indices = metr.get_free_indices(); return (indices.size() == 2) && simplify_indexed(get_metric(indices[0], indices[1])-metr).is_zero(); } } ////////// // functions overriding virtual functions from base classes ////////// ex clifford::op(size_t i) const { GINAC_ASSERT(i(subsed)) { ex prevmetric = ex_to(subsed).metric; ex newmetric = prevmetric.subs(m, options); if(!are_ex_trivially_equal(prevmetric, newmetric)) { clifford c = ex_to(subsed); c.metric = newmetric; subsed = c; } } return subsed; } int clifford::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const clifford &o = static_cast(other); if (representation_label != o.representation_label) { // different representation label return representation_label < o.representation_label ? -1 : 1; } return inherited::compare_same_type(other); } bool clifford::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const clifford &o = static_cast(other); return ((representation_label == o.representation_label) && (commutator_sign == o.get_commutator_sign()) && same_metric(o)); } static bool is_dirac_slash(const ex & seq0) { return !is_a(seq0) && !is_a(seq0) && !is_a(seq0) && !is_a(seq0) && !is_a(seq0); } void clifford::do_print_dflt(const print_dflt & c, unsigned level) const { // dirac_slash() object is printed differently if (is_dirac_slash(seq[0])) { seq[0].print(c, precedence()); c.s << "\\"; } else { // We do not print representation label if it is 0 if (representation_label == 0) { this->print_dispatch(c, level); } else { // otherwise we put it before indices in square brackets; the code is borrowed from indexed.cpp if (precedence() <= level) { c.s << '('; } seq[0].print(c, precedence()); c.s << '[' << int(representation_label) << ']'; printindices(c, level); if (precedence() <= level) { c.s << ')'; } } } } void clifford::do_print_latex(const print_latex & c, unsigned level) const { // dirac_slash() object is printed differently if (is_dirac_slash(seq[0])) { c.s << "{"; seq[0].print(c, precedence()); c.s << "\\hspace{-1.0ex}/}"; } else { c.s << "\\clifford[" << int(representation_label) << "]"; this->print_dispatch(c, level); } } DEFAULT_COMPARE(diracone) DEFAULT_COMPARE(cliffordunit) DEFAULT_COMPARE(diracgamma) DEFAULT_COMPARE(diracgamma5) DEFAULT_COMPARE(diracgammaL) DEFAULT_COMPARE(diracgammaR) DEFAULT_PRINT_LATEX(diracone, "ONE", "\\mathbf{1}") DEFAULT_PRINT_LATEX(cliffordunit, "e", "e") DEFAULT_PRINT_LATEX(diracgamma, "gamma", "\\gamma") DEFAULT_PRINT_LATEX(diracgamma5, "gamma5", "{\\gamma^5}") DEFAULT_PRINT_LATEX(diracgammaL, "gammaL", "{\\gamma_L}") DEFAULT_PRINT_LATEX(diracgammaR, "gammaR", "{\\gamma_R}") /** This function decomposes gamma~mu -> (1, mu) and a\ -> (a.ix, ix) */ static void base_and_index(const ex & c, ex & b, ex & i) { GINAC_ASSERT(is_a(c)); GINAC_ASSERT(c.nops() == 2+1); if (is_a(c.op(0))) { // proper dirac gamma object or clifford unit i = c.op(1); b = _ex1; } else if (is_a(c.op(0)) || is_a(c.op(0)) || is_a(c.op(0))) { // gamma5/L/R i = _ex0; b = _ex1; } else { // slash object, generate new dummy index varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to(c.op(1)).get_dim()); b = indexed(c.op(0), ix.toggle_variance()); i = ix; } } /** Predicate for finding non-clifford objects. */ struct is_not_a_clifford : public std::unary_function { bool operator()(const ex & e) { return !is_a(e); } }; /** Contraction of a gamma matrix with something else. */ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(is_a(self->op(0))); unsigned char rl = ex_to(*self).get_representation_label(); ex dim = ex_to(self->op(1)).get_dim(); if (other->nops() > 1) dim = minimal_dim(dim, ex_to(other->op(1)).get_dim()); if (is_a(*other)) { // Contraction only makes sense if the represenation labels are equal if (ex_to(*other).get_representation_label() != rl) return false; size_t num = other - self; // gamma~mu gamma.mu = dim ONE if (num == 1) { *self = dim; *other = dirac_ONE(rl); return true; // gamma~mu gamma~alpha gamma.mu = (2-dim) gamma~alpha } else if (num == 2 && is_a(self[1])) { *self = 2 - dim; *other = _ex1; return true; // gamma~mu gamma~alpha gamma~beta gamma.mu = 4 g~alpha~beta + (dim-4) gamam~alpha gamma~beta } else if (num == 3 && is_a(self[1]) && is_a(self[2])) { ex b1, i1, b2, i2; base_and_index(self[1], b1, i1); base_and_index(self[2], b2, i2); *self = 4 * lorentz_g(i1, i2) * b1 * b2 * dirac_ONE(rl) + (dim - 4) * self[1] * self[2]; self[1] = _ex1; self[2] = _ex1; *other = _ex1; return true; // gamma~mu gamma~alpha gamma~beta gamma~delta gamma.mu = -2 gamma~delta gamma~beta gamma~alpha - (dim-4) gamam~alpha gamma~beta gamma~delta } else if (num == 4 && is_a(self[1]) && is_a(self[2]) && is_a(self[3])) { *self = -2 * self[3] * self[2] * self[1] - (dim - 4) * self[1] * self[2] * self[3]; self[1] = _ex1; self[2] = _ex1; self[3] = _ex1; *other = _ex1; return true; // gamma~mu Sodd gamma.mu = -2 Sodd_R // (Chisholm identity in 4 dimensions) } else if (!((other - self) & 1) && dim.is_equal(4)) { if (std::find_if(self + 1, other, is_not_a_clifford()) != other) return false; *self = ncmul(exvector(std::reverse_iterator(other), std::reverse_iterator(self + 1)), true); std::fill(self + 1, other, _ex1); *other = _ex_2; return true; // gamma~mu Sodd gamma~alpha gamma.mu = 2 gamma~alpha Sodd + 2 Sodd_R gamma~alpha // (commutate contracted indices towards each other, then use // Chisholm identity in 4 dimensions) } else if (((other - self) & 1) && dim.is_equal(4)) { if (std::find_if(self + 1, other, is_not_a_clifford()) != other) return false; exvector::iterator next_to_last = other - 1; ex S = ncmul(exvector(self + 1, next_to_last), true); ex SR = ncmul(exvector(std::reverse_iterator(next_to_last), std::reverse_iterator(self + 1)), true); *self = (*next_to_last) * S + SR * (*next_to_last); std::fill(self + 1, other, _ex1); *other = _ex2; return true; // gamma~mu S gamma~alpha gamma.mu = 2 gamma~alpha S - gamma~mu S gamma.mu gamma~alpha // (commutate contracted indices towards each other, simplify_indexed() // will re-expand and re-run the simplification) } else { if (std::find_if(self + 1, other, is_not_a_clifford()) != other) return false; exvector::iterator next_to_last = other - 1; ex S = ncmul(exvector(self + 1, next_to_last), true); *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last); std::fill(self + 1, other + 1, _ex1); return true; } } else if (is_a(other->op(0)) && other->nops() == 2) { // x.mu gamma~mu -> x-slash *self = dirac_slash(other->op(0), dim, rl); *other = _ex1; return true; } return false; } /** Contraction of a Clifford unit with something else. */ bool cliffordunit::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(is_a(self->op(0))); clifford unit = ex_to(*self); unsigned char rl = unit.get_representation_label(); if (is_a(*other)) { // Contraction only makes sense if the represenation labels are equal // and the metrics are the same if ((ex_to(*other).get_representation_label() != rl) && unit.same_metric(*other)) return false; exvector::iterator before_other = other - 1; ex mu = self->op(1); ex mu_toggle = other->op(1); ex alpha = before_other->op(1); // e~mu e.mu = Tr ONE if (other - self == 1) { *self = unit.get_metric(mu, mu_toggle, true); *other = dirac_ONE(rl); return true; } else if (other - self == 2) { if (is_a(*before_other) && ex_to(*before_other).get_representation_label() == rl) { // e~mu e~alpha e.mu = 2*e~mu B(alpha, mu.toggle_variance())-Tr(B) e~alpha *self = 2 * (*self) * unit.get_metric(alpha, mu_toggle, true) - unit.get_metric(mu, mu_toggle, true) * (*before_other); *before_other = _ex1; *other = _ex1; return true; } else { // e~mu S e.mu = Tr S ONE *self = unit.get_metric(mu, mu_toggle, true); *other = dirac_ONE(rl); return true; } } else { // e~mu S e~alpha e.mu = 2 e~mu S B(alpha, mu.toggle_variance()) - e~mu S e.mu e~alpha // (commutate contracted indices towards each other, simplify_indexed() // will re-expand and re-run the simplification) if (std::find_if(self + 1, other, is_not_a_clifford()) != other) { return false; } ex S = ncmul(exvector(self + 1, before_other), true); if (is_a(*before_other) && ex_to(*before_other).get_representation_label() == rl) { *self = 2 * (*self) * S * unit.get_metric(alpha, mu_toggle, true) - (*self) * S * (*other) * (*before_other); } else { // simply commutes *self = (*self) * S * (*other) * (*before_other); } std::fill(self + 1, other + 1, _ex1); return true; } } return false; } /** Perform automatic simplification on noncommutative product of clifford * objects. This removes superfluous ONEs, permutes gamma5/L/R's to the front * and removes squares of gamma objects. */ ex clifford::eval_ncmul(const exvector & v) const { exvector s; s.reserve(v.size()); // Remove superfluous ONEs exvector::const_iterator cit = v.begin(), citend = v.end(); while (cit != citend) { if (!is_a(*cit) || !is_a(cit->op(0))) s.push_back(*cit); cit++; } bool something_changed = false; int sign = 1; // Anticommutate gamma5/L/R's to the front if (s.size() >= 2) { exvector::iterator first = s.begin(), next_to_last = s.end() - 2; while (true) { exvector::iterator it = next_to_last; while (true) { exvector::iterator it2 = it + 1; if (is_a(*it) && is_a(*it2)) { ex e1 = it->op(0), e2 = it2->op(0); if (is_a(e2)) { if (is_a(e1) || is_a(e1)) { // gammaL/R gamma5 -> gamma5 gammaL/R it->swap(*it2); something_changed = true; } else if (!is_a(e1)) { // gamma5 gamma5 -> gamma5 gamma5 (do nothing) // x gamma5 -> -gamma5 x it->swap(*it2); sign = -sign; something_changed = true; } } else if (is_a(e2)) { if (is_a(e1)) { // gammaR gammaL -> 0 return _ex0; } else if (!is_a(e1) && !is_a(e1)) { // gammaL gammaL -> gammaL gammaL (do nothing) // gamma5 gammaL -> gamma5 gammaL (do nothing) // x gammaL -> gammaR x it->swap(*it2); *it = clifford(diracgammaR(), ex_to(*it).get_representation_label()); something_changed = true; } } else if (is_a(e2)) { if (is_a(e1)) { // gammaL gammaR -> 0 return _ex0; } else if (!is_a(e1) && !is_a(e1)) { // gammaR gammaR -> gammaR gammaR (do nothing) // gamma5 gammaR -> gamma5 gammaR (do nothing) // x gammaR -> gammaL x it->swap(*it2); *it = clifford(diracgammaL(), ex_to(*it).get_representation_label()); something_changed = true; } } } if (it == first) break; --it; } if (next_to_last == first) break; --next_to_last; } } // Remove equal adjacent gammas if (s.size() >= 2) { exvector::iterator it, itend = s.end() - 1; for (it = s.begin(); it != itend; ++it) { ex & a = it[0]; ex & b = it[1]; if (!is_a(a) || !is_a(b)) continue; const ex & ag = a.op(0); const ex & bg = b.op(0); bool a_is_cliffordunit = is_a(ag); bool b_is_cliffordunit = is_a(bg); if (a_is_cliffordunit && b_is_cliffordunit && ex_to(a).same_metric(b) && (ex_to(a).get_commutator_sign() == -1)) { // This is done only for Clifford algebras const ex & ia = a.op(1); const ex & ib = b.op(1); if (ia.is_equal(ib)) { // gamma~alpha gamma~alpha -> g~alpha~alpha a = ex_to(a).get_metric(ia, ib, true); b = dirac_ONE(representation_label); something_changed = true; } } else if ((is_a(ag) && is_a(bg))) { // Remove squares of gamma5 a = dirac_ONE(representation_label); b = dirac_ONE(representation_label); something_changed = true; } else if ((is_a(ag) && is_a(bg)) || (is_a(ag) && is_a(bg))) { // Remove squares of gammaL/R b = dirac_ONE(representation_label); something_changed = true; } else if (is_a(ag) && is_a(bg)) { // gammaL and gammaR are orthogonal return _ex0; } else if (is_a(ag) && is_a(bg)) { // gamma5 gammaL -> -gammaL a = dirac_ONE(representation_label); sign = -sign; something_changed = true; } else if (is_a(ag) && is_a(bg)) { // gamma5 gammaR -> gammaR a = dirac_ONE(representation_label); something_changed = true; } else if (!a_is_cliffordunit && !b_is_cliffordunit && ag.is_equal(bg)) { // a\ a\ -> a^2 varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to(a.op(1)).minimal_dim(ex_to(b.op(1)))); a = indexed(ag, ix) * indexed(ag, ix.toggle_variance()); b = dirac_ONE(representation_label); something_changed = true; } } } if (s.empty()) return dirac_ONE(representation_label) * sign; if (something_changed) return reeval_ncmul(s) * sign; else return hold_ncmul(s) * sign; } ex clifford::thiscontainer(const exvector & v) const { return clifford(representation_label, metric, commutator_sign, v); } ex clifford::thiscontainer(std::auto_ptr vp) const { return clifford(representation_label, metric, commutator_sign, vp); } ex diracgamma5::conjugate() const { return _ex_1 * (*this); } ex diracgammaL::conjugate() const { return (new diracgammaR)->setflag(status_flags::dynallocated); } ex diracgammaR::conjugate() const { return (new diracgammaL)->setflag(status_flags::dynallocated); } ////////// // global functions ////////// ex dirac_ONE(unsigned char rl) { static ex ONE = (new diracone)->setflag(status_flags::dynallocated); return clifford(ONE, rl); } static unsigned get_dim_uint(const ex& e) { if (!is_a(e)) throw std::invalid_argument("get_dim_uint: argument is not an index"); ex dim = ex_to(e).get_dim(); if (!dim.info(info_flags::posint)) throw std::invalid_argument("get_dim_uint: dimension of index should be a positive integer"); unsigned d = ex_to(dim).to_int(); return d; } ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl) { //static ex unit = (new cliffordunit)->setflag(status_flags::dynallocated); ex unit = (new cliffordunit)->setflag(status_flags::dynallocated); if (!is_a(mu)) throw(std::invalid_argument("clifford_unit(): index of Clifford unit must be of type idx or varidx")); exvector indices = metr.get_free_indices(); if (indices.size() == 2) { return clifford(unit, mu, metr, rl); } else if (is_a(metr)) { matrix M = ex_to(metr); unsigned n = M.rows(); bool symmetric = true; //static idx xi((new symbol)->setflag(status_flags::dynallocated), n), // chi((new symbol)->setflag(status_flags::dynallocated), n); idx xi((new symbol)->setflag(status_flags::dynallocated), n), chi((new symbol)->setflag(status_flags::dynallocated), n); if ((n == M.cols()) && (n == get_dim_uint(mu))) { for (unsigned i = 0; i < n; i++) { for (unsigned j = i+1; j < n; j++) { if (!M(i, j).is_equal(M(j, i))) { symmetric = false; } } } return clifford(unit, mu, indexed(metr, symmetric?symmetric2():not_symmetric(), xi, chi), rl); } else { throw(std::invalid_argument("clifford_unit(): metric for Clifford unit must be a square matrix with the same dimensions as index")); } } else if (indices.size() == 0) { // a tensor or other expression without indices //static varidx xi((new symbol)->setflag(status_flags::dynallocated), ex_to(mu).get_dim()), // chi((new symbol)->setflag(status_flags::dynallocated), ex_to(mu).get_dim()); varidx xi((new symbol)->setflag(status_flags::dynallocated), ex_to(mu).get_dim()), chi((new symbol)->setflag(status_flags::dynallocated), ex_to(mu).get_dim()); return clifford(unit, mu, indexed(metr, xi, chi), rl); } else throw(std::invalid_argument("clifford_unit(): metric for Clifford unit must be of type tensor, matrix or an expression with two free indices")); } ex dirac_gamma(const ex & mu, unsigned char rl) { static ex gamma = (new diracgamma)->setflag(status_flags::dynallocated); if (!is_a(mu)) throw(std::invalid_argument("dirac_gamma(): index of Dirac gamma must be of type varidx")); static varidx xi((new symbol)->setflag(status_flags::dynallocated), ex_to(mu).get_dim()), chi((new symbol)->setflag(status_flags::dynallocated), ex_to(mu).get_dim()); return clifford(gamma, mu, indexed((new minkmetric)->setflag(status_flags::dynallocated), symmetric2(), xi, chi), rl); } ex dirac_gamma5(unsigned char rl) { static ex gamma5 = (new diracgamma5)->setflag(status_flags::dynallocated); return clifford(gamma5, rl); } ex dirac_gammaL(unsigned char rl) { static ex gammaL = (new diracgammaL)->setflag(status_flags::dynallocated); return clifford(gammaL, rl); } ex dirac_gammaR(unsigned char rl) { static ex gammaR = (new diracgammaR)->setflag(status_flags::dynallocated); return clifford(gammaR, rl); } ex dirac_slash(const ex & e, const ex & dim, unsigned char rl) { // Slashed vectors are actually stored as a clifford object with the // vector as its base expression and a (dummy) index that just serves // for storing the space dimensionality static varidx xi((new symbol)->setflag(status_flags::dynallocated), dim), chi((new symbol)->setflag(status_flags::dynallocated), dim); return clifford(e, varidx(0, dim), indexed((new minkmetric)->setflag(status_flags::dynallocated), symmetric2(), xi, chi), rl); } /** Extract representation label from tinfo key (as returned by * return_type_tinfo()). */ static unsigned char get_representation_label(const return_type_t& ti) { return (unsigned char)ti.rl; } /** Take trace of a string of an even number of Dirac gammas given a vector * of indices. */ static ex trace_string(exvector::const_iterator ix, size_t num) { // Tr gamma.mu gamma.nu = 4 g.mu.nu if (num == 2) return lorentz_g(ix[0], ix[1]); // Tr gamma.mu gamma.nu gamma.rho gamma.sig = 4 (g.mu.nu g.rho.sig + g.nu.rho g.mu.sig - g.mu.rho g.nu.sig ) else if (num == 4) return lorentz_g(ix[0], ix[1]) * lorentz_g(ix[2], ix[3]) + lorentz_g(ix[1], ix[2]) * lorentz_g(ix[0], ix[3]) - lorentz_g(ix[0], ix[2]) * lorentz_g(ix[1], ix[3]); // Traces of 6 or more gammas are computed recursively: // Tr gamma.mu1 gamma.mu2 ... gamma.mun = // + g.mu1.mu2 * Tr gamma.mu3 ... gamma.mun // - g.mu1.mu3 * Tr gamma.mu2 gamma.mu4 ... gamma.mun // + g.mu1.mu4 * Tr gamma.mu3 gamma.mu3 gamma.mu5 ... gamma.mun // - ... // + g.mu1.mun * Tr gamma.mu2 ... gamma.mu(n-1) exvector v(num - 2); int sign = 1; ex result; for (size_t i=1; i & rls, const ex & trONE) { if (is_a(e)) { unsigned char rl = ex_to(e).get_representation_label(); // Are we taking the trace over this object's representation label? if (rls.find(rl) == rls.end()) return e; // Yes, all elements are traceless, except for dirac_ONE and dirac_L/R const ex & g = e.op(0); if (is_a(g)) return trONE; else if (is_a(g) || is_a(g)) return trONE/2; else return _ex0; } else if (is_exactly_a(e)) { // Trace of product: pull out non-clifford factors ex prod = _ex1; for (size_t i=0; i(e)) { unsigned char rl = get_representation_label(e.return_type_tinfo()); // Are we taking the trace over this string's representation label? if (rls.find(rl) == rls.end()) return e; // Substitute gammaL/R and expand product, if necessary ex e_expanded = e.subs(lst( dirac_gammaL(rl) == (dirac_ONE(rl)-dirac_gamma5(rl))/2, dirac_gammaR(rl) == (dirac_ONE(rl)+dirac_gamma5(rl))/2 ), subs_options::no_pattern).expand(); if (!is_a(e_expanded)) return dirac_trace(e_expanded, rls, trONE); // gamma5 gets moved to the front so this check is enough bool has_gamma5 = is_a(e.op(0).op(0)); size_t num = e.nops(); if (has_gamma5) { // Trace of gamma5 * odd number of gammas and trace of // gamma5 * gamma.mu * gamma.nu are zero if ((num & 1) == 0 || num == 3) return _ex0; // Tr gamma5 gamma.mu gamma.nu gamma.rho gamma.sigma = 4I * epsilon(mu, nu, rho, sigma) // (the epsilon is always 4-dimensional) if (num == 5) { ex b1, i1, b2, i2, b3, i3, b4, i4; base_and_index(e.op(1), b1, i1); base_and_index(e.op(2), b2, i2); base_and_index(e.op(3), b3, i3); base_and_index(e.op(4), b4, i4); return trONE * I * (lorentz_eps(ex_to(i1).replace_dim(_ex4), ex_to(i2).replace_dim(_ex4), ex_to(i3).replace_dim(_ex4), ex_to(i4).replace_dim(_ex4)) * b1 * b2 * b3 * b4).simplify_indexed(); } // Tr gamma5 S_2k = // I/4! * epsilon0123.mu1.mu2.mu3.mu4 * Tr gamma.mu1 gamma.mu2 gamma.mu3 gamma.mu4 S_2k // (the epsilon is always 4-dimensional) exvector ix(num-1), bv(num-1); for (size_t i=1; i(idx1).replace_dim(_ex4), ex_to(idx2).replace_dim(_ex4), ex_to(idx3).replace_dim(_ex4), ex_to(idx4).replace_dim(_ex4)) * trace_string(v.begin(), num - 4); } } } } delete[] iv; return trONE * I * result * mul(bv); } else { // no gamma5 // Trace of odd number of gammas is zero if ((num & 1) == 1) return _ex0; // Tr gamma.mu gamma.nu = 4 g.mu.nu if (num == 2) { ex b1, i1, b2, i2; base_and_index(e.op(0), b1, i1); base_and_index(e.op(1), b2, i2); return trONE * (lorentz_g(i1, i2) * b1 * b2).simplify_indexed(); } exvector iv(num), bv(num); for (size_t i=0; i 0) { // Trace maps to all other container classes (this includes sums) pointer_to_map_function_2args &, const ex &> fcn(dirac_trace, rls, trONE); return e.map(fcn); } else return _ex0; } ex dirac_trace(const ex & e, const lst & rll, const ex & trONE) { // Convert list to set std::set rls; for (lst::const_iterator i = rll.begin(); i != rll.end(); ++i) { if (i->info(info_flags::nonnegint)) rls.insert(ex_to(*i).to_int()); } return dirac_trace(e, rls, trONE); } ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE) { // Convert label to set std::set rls; rls.insert(rl); return dirac_trace(e, rls, trONE); } ex canonicalize_clifford(const ex & e_) { pointer_to_map_function fcn(canonicalize_clifford); if (is_a(e_) // || is_a(e) || is_a(e) || e_.info(info_flags::list)) { return e_.map(fcn); } else { ex e=simplify_indexed(e_); // Scan for any ncmul objects exmap srl; ex aux = e.to_rational(srl); for (exmap::iterator i = srl.begin(); i != srl.end(); ++i) { ex lhs = i->first; ex rhs = i->second; if (is_exactly_a(rhs) && rhs.return_type() == return_types::noncommutative && is_clifford_tinfo(rhs.return_type_tinfo())) { // Expand product, if necessary ex rhs_expanded = rhs.expand(); if (!is_a(rhs_expanded)) { i->second = canonicalize_clifford(rhs_expanded); continue; } else if (!is_a(rhs.op(0))) continue; exvector v; v.reserve(rhs.nops()); for (size_t j=0; j(it->op(0)) || is_a(it->op(0)) || is_a(it->op(0))) ++it; while (it != next_to_last) { if (it[0].compare(it[1]) > 0) { ex save0 = it[0], save1 = it[1]; ex b1, i1, b2, i2; base_and_index(it[0], b1, i1); base_and_index(it[1], b2, i2); // for Clifford algebras (commutator_sign == -1) metric should be symmetrised it[0] = (ex_to(save0).get_metric(i1, i2, ex_to(save0).get_commutator_sign() == -1) * b1 * b2).simplify_indexed(); it[1] = v.size() ? _ex2 * dirac_ONE(ex_to(save0).get_representation_label()) : _ex2; ex sum = ncmul(v); it[0] = save1; it[1] = save0; sum += ex_to(save0).get_commutator_sign() * ncmul(v, true); i->second = canonicalize_clifford(sum); goto next_sym; } ++it; } next_sym: ; } } return aux.subs(srl, subs_options::no_pattern).simplify_indexed(); } } ex clifford_prime(const ex & e) { pointer_to_map_function fcn(clifford_prime); if (is_a(e) && is_a(e.op(0))) { return -e; } else if (is_a(e) || is_a(e) || is_a(e) //|| is_a(e) || is_a(e) || is_a(e) || e.info(info_flags::list)) { return e.map(fcn); } else if (is_a(e)) { return pow(clifford_prime(e.op(0)), e.op(1)); } else return e; } ex remove_dirac_ONE(const ex & e, unsigned char rl, unsigned options) { pointer_to_map_function_2args fcn(remove_dirac_ONE, rl, options | 1); bool need_reevaluation = false; ex e1 = e; if (! (options & 1) ) { // is not a child if (options & 2) e1 = expand_dummy_sum(e, true); e1 = canonicalize_clifford(e1); } if (is_a(e1) && ex_to(e1).get_representation_label() >= rl) { if (is_a(e1.op(0))) return 1; else throw(std::invalid_argument("remove_dirac_ONE(): expression is a non-scalar Clifford number!")); } else if (is_a(e1) || is_a(e1) || is_a(e1) || is_a(e1) || e1.info(info_flags::list)) { if (options & 3) // is a child or was already expanded return e1.map(fcn); else try { return e1.map(fcn); } catch (std::exception &p) { need_reevaluation = true; } } else if (is_a(e1)) { if (options & 3) // is a child or was already expanded return pow(remove_dirac_ONE(e1.op(0), rl, options | 1), e1.op(1)); else try { return pow(remove_dirac_ONE(e1.op(0), rl, options | 1), e1.op(1)); } catch (std::exception &p) { need_reevaluation = true; } } if (need_reevaluation) return remove_dirac_ONE(e, rl, options | 2); return e1; } int clifford_max_label(const ex & e, bool ignore_ONE) { if (is_a(e)) if (ignore_ONE && is_a(e.op(0))) return -1; else return ex_to(e).get_representation_label(); else { int rl = -1; for (size_t i=0; i < e.nops(); i++) rl = (rl > clifford_max_label(e.op(i), ignore_ONE)) ? rl : clifford_max_label(e.op(i), ignore_ONE); return rl; } } ex clifford_norm(const ex & e) { return sqrt(remove_dirac_ONE(e * clifford_bar(e))); } ex clifford_inverse(const ex & e) { ex norm = clifford_norm(e); if (!norm.is_zero()) return clifford_bar(e) / pow(norm, 2); else throw(std::invalid_argument("clifford_inverse(): cannot find inverse of Clifford number with zero norm!")); } ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr, unsigned char rl) { if (!ex_to(mu).is_dim_numeric()) throw(std::invalid_argument("lst_to_clifford(): Index should have a numeric dimension")); ex e = clifford_unit(mu, metr, rl); return lst_to_clifford(v, e); } ex lst_to_clifford(const ex & v, const ex & e) { unsigned min, max; if (is_a(e)) { ex mu = e.op(1); ex mu_toggle = is_a(mu) ? ex_to(mu).toggle_variance() : mu; unsigned dim = get_dim_uint(mu); if (is_a(v)) { if (ex_to(v).cols() > ex_to(v).rows()) { min = ex_to(v).rows(); max = ex_to(v).cols(); } else { min = ex_to(v).cols(); max = ex_to(v).rows(); } if (min == 1) { if (dim == max) return indexed(v, mu_toggle) * e; else if (max - dim == 1) { if (ex_to(v).cols() > ex_to(v).rows()) return v.op(0) * dirac_ONE(ex_to(e).get_representation_label()) + indexed(sub_matrix(ex_to(v), 0, 1, 1, dim), mu_toggle) * e; else return v.op(0) * dirac_ONE(ex_to(e).get_representation_label()) + indexed(sub_matrix(ex_to(v), 1, dim, 0, 1), mu_toggle) * e; } else throw(std::invalid_argument("lst_to_clifford(): dimensions of vector and clifford unit mismatch")); } else throw(std::invalid_argument("lst_to_clifford(): first argument should be a vector (nx1 or 1xn matrix)")); } else if (v.info(info_flags::list)) { if (dim == ex_to(v).nops()) return indexed(matrix(dim, 1, ex_to(v)), mu_toggle) * e; else if (ex_to(v).nops() - dim == 1) return v.op(0) * dirac_ONE(ex_to(e).get_representation_label()) + indexed(sub_matrix(matrix(dim+1, 1, ex_to(v)), 1, dim, 0, 1), mu_toggle) * e; else throw(std::invalid_argument("lst_to_clifford(): list length and dimension of clifford unit mismatch")); } else throw(std::invalid_argument("lst_to_clifford(): cannot construct from anything but list or vector")); } else throw(std::invalid_argument("lst_to_clifford(): the second argument should be a Clifford unit")); } /** Auxiliary structure to define a function for striping one Clifford unit * from vectors. Used in clifford_to_lst(). */ static ex get_clifford_comp(const ex & e, const ex & c) { pointer_to_map_function_1arg fcn(get_clifford_comp, c); int ival = ex_to(ex_to(c.op(1)).get_value()).to_int(); if (is_a(e) || e.info(info_flags::list) // || is_a(e) || is_a(e) || is_a(e)) return e.map(fcn); else if (is_a(e) || is_a(e)) { // find a Clifford unit with the same metric, delete it and substitute its index size_t ind = e.nops() + 1; for (size_t j = 0; j < e.nops(); j++) { if (is_a(e.op(j)) && ex_to(c).same_metric(e.op(j))) { if (ind > e.nops()) { ind = j; } else { throw(std::invalid_argument("get_clifford_comp(): expression is a Clifford multi-vector")); } } } if (ind < e.nops()) { ex S = 1; bool same_value_index, found_dummy; same_value_index = ( ex_to(e.op(ind).op(1)).is_numeric() && (ival == ex_to(ex_to(e.op(ind).op(1)).get_value()).to_int()) ); found_dummy = same_value_index; for (size_t j=0; j < e.nops(); j++) { if (j != ind) { if (same_value_index) { S = S * e.op(j); } else { exvector ind_vec = ex_to(e.op(j)).get_dummy_indices(ex_to(e.op(ind))); if (ind_vec.size() > 0) { found_dummy = true; exvector::const_iterator it = ind_vec.begin(), itend = ind_vec.end(); while (it != itend) { ex curridx = *it; ex curridx_toggle = is_a(curridx) ? ex_to(curridx).toggle_variance() : curridx; S = S * e.op(j).subs(lst(curridx == ival, curridx_toggle == ival), subs_options::no_pattern); ++it; } } else S = S * e.op(j); } } } return (found_dummy ? S : 0); } else throw(std::invalid_argument("get_clifford_comp(): expression is not a Clifford vector to the given units")); } else if (e.is_zero()) return e; else if (is_a(e) && ex_to(e).same_metric(c)) if ( ex_to(e.op(1)).is_numeric() && (ival != ex_to(ex_to(e.op(1)).get_value()).to_int()) ) return 0; else return 1; else throw(std::invalid_argument("get_clifford_comp(): expression is not usable as a Clifford vector")); } lst clifford_to_lst(const ex & e, const ex & c, bool algebraic) { GINAC_ASSERT(is_a(c)); ex mu = c.op(1); if (! ex_to(mu).is_dim_numeric()) throw(std::invalid_argument("clifford_to_lst(): index should have a numeric dimension")); unsigned int D = ex_to(ex_to(mu).get_dim()).to_int(); if (algebraic) // check if algebraic method is applicable for (unsigned int i = 0; i < D; i++) if (pow(c.subs(mu == i, subs_options::no_pattern), 2).is_zero() || (! is_a(pow(c.subs(mu == i, subs_options::no_pattern), 2)))) algebraic = false; lst V; ex v0 = remove_dirac_ONE(canonicalize_clifford(e+clifford_prime(e)).normal())/2; if (! v0.is_zero()) V.append(v0); ex e1 = canonicalize_clifford(e - v0 * dirac_ONE(ex_to(c).get_representation_label())); if (algebraic) { for (unsigned int i = 0; i < D; i++) V.append(remove_dirac_ONE( simplify_indexed(canonicalize_clifford(e1 * c.subs(mu == i, subs_options::no_pattern) + c.subs(mu == i, subs_options::no_pattern) * e1)) / (2*pow(c.subs(mu == i, subs_options::no_pattern), 2)))); } else { try { for (unsigned int i = 0; i < D; i++) V.append(get_clifford_comp(e1, c.subs(c.op(1) == i, subs_options::no_pattern))); } catch (std::exception &p) { /* Try to expand dummy summations to simplify the expression*/ e1 = canonicalize_clifford(expand_dummy_sum(e, true)); V.remove_all(); v0 = remove_dirac_ONE(canonicalize_clifford(e1+clifford_prime(e1)).normal())/2; if (! v0.is_zero()) { V.append(v0); e1 = canonicalize_clifford(e1 - v0 * dirac_ONE(ex_to(c).get_representation_label())); } for (unsigned int i = 0; i < D; i++) V.append(get_clifford_comp(e1, c.subs(c.op(1) == i, subs_options::no_pattern))); } } return V; } ex clifford_moebius_map(const ex & a, const ex & b, const ex & c, const ex & d, const ex & v, const ex & G, unsigned char rl) { ex x, D, cu; if (! is_a(v) && ! v.info(info_flags::list)) throw(std::invalid_argument("clifford_moebius_map(): parameter v should be either vector or list")); if (is_a(G)) { cu = G; } else { if (is_a(G)) { D = ex_to(G.op(1)).get_dim(); varidx mu((new symbol)->setflag(status_flags::dynallocated), D); cu = clifford_unit(mu, G, rl); } else if (is_a(G)) { D = ex_to(G).rows(); idx mu((new symbol)->setflag(status_flags::dynallocated), D); cu = clifford_unit(mu, G, rl); } else throw(std::invalid_argument("clifford_moebius_map(): metric should be an indexed object, matrix, or a Clifford unit")); } x = lst_to_clifford(v, cu); ex e = clifford_to_lst(simplify_indexed(canonicalize_clifford((a * x + b) * clifford_inverse(c * x + d))), cu, false); return (is_a(v) ? matrix(ex_to(v).rows(), ex_to(v).cols(), ex_to(e)) : e); } ex clifford_moebius_map(const ex & M, const ex & v, const ex & G, unsigned char rl) { if (is_a(M) && (ex_to(M).rows() == 2) && (ex_to(M).cols() == 2)) return clifford_moebius_map(M.op(0), M.op(1), M.op(2), M.op(3), v, G, rl); else throw(std::invalid_argument("clifford_moebius_map(): parameter M should be a 2x2 matrix")); } } // namespace GiNaC