/** @file basic.cpp * * Implementation of GiNaC's ABC. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "basic.h" #include "ex.h" #include "numeric.h" #include "power.h" #include "symbol.h" #include "lst.h" #include "ncmul.h" #include "print.h" #include "archive.h" #include "utils.h" #include "debugmsg.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_NO_CTORS(basic, void) ////////// // default ctor, dtor, copy ctor assignment operator and helpers ////////// // public basic::basic(const basic & other) : tinfo_key(TINFO_basic), flags(0), refcount(0) { debugmsg("basic copy ctor", LOGLEVEL_CONSTRUCT); copy(other); } const basic & basic::operator=(const basic & other) { debugmsg("basic operator=", LOGLEVEL_ASSIGNMENT); if (this != &other) { destroy(true); copy(other); } return *this; } // protected // none (all conditionally inlined) ////////// // other ctors ////////// // none (all conditionally inlined) ////////// // archiving ////////// /** Construct object from archive_node. */ basic::basic(const archive_node &n, const lst &sym_lst) : flags(0), refcount(0) { debugmsg("basic ctor from archive_node", LOGLEVEL_CONSTRUCT); // Reconstruct tinfo_key from class name std::string class_name; if (n.find_string("class", class_name)) tinfo_key = find_tinfo_key(class_name); else throw (std::runtime_error("archive node contains no class name")); } /** Unarchive the object. */ DEFAULT_UNARCHIVE(basic) /** Archive the object. */ void basic::archive(archive_node &n) const { n.add_string("class", class_name()); } ////////// // functions overriding virtual functions from bases classes ////////// // none ////////// // new virtual functions which can be overridden by derived classes ////////// // public /** Output to stream. * @param c print context object that describes the output formatting * @param level value that is used to identify the precedence or indentation * level for placing parentheses and formatting */ void basic::print(const print_context & c, unsigned level) const { debugmsg("basic print", LOGLEVEL_PRINT); if (is_of_type(c, print_tree)) { c.s << std::string(level, ' ') << class_name() << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << ", nops=" << nops() << std::endl; for (unsigned i=0; i(c).delta_indent); } else c.s << "[" << class_name() << " object]"; } /** Little wrapper arount print to be called within a debugger. * This is needed because you cannot call foo.print(cout) from within the * debugger because it might not know what cout is. This method can be * invoked with no argument and it will simply print to stdout. * * @see basic::print */ void basic::dbgprint(void) const { this->print(std::cerr); std::cerr << std::endl; } /** Little wrapper arount printtree to be called within a debugger. * * @see basic::dbgprint * @see basic::printtree */ void basic::dbgprinttree(void) const { this->print(print_tree(std::cerr)); } /** Create a new copy of this on the heap. One can think of this as simulating * a virtual copy constructor which is needed for instance by the refcounted * construction of an ex from a basic. */ basic * basic::duplicate() const { debugmsg("basic duplicate",LOGLEVEL_DUPLICATE); return new basic(*this); } /** Information about the object. * * @see class info_flags */ bool basic::info(unsigned inf) const { // all possible properties are false for basic objects return false; } /** Number of operands/members. */ unsigned basic::nops() const { // iterating from 0 to nops() on atomic objects should be an empty loop, // and accessing their elements is a range error. Container objects should // override this. return 0; } /** Return operand/member at position i. */ ex basic::op(int i) const { return (const_cast(this))->let_op(i); } /** Return modifyable operand/member at position i. */ ex & basic::let_op(int i) { throw(std::out_of_range("op() out of range")); } ex basic::operator[](const ex & index) const { if (is_exactly_of_type(*index.bp,numeric)) return op(static_cast(*index.bp).to_int()); throw(std::invalid_argument("non-numeric indices not supported by this type")); } ex basic::operator[](int i) const { return op(i); } /** Search ocurrences. An object 'has' an expression if it is the expression * itself or one of the children 'has' it. As a consequence (according to * the definition of children) given e=x+y+z, e.has(x) is true but e.has(x+y) * is false. */ bool basic::has(const ex & other) const { GINAC_ASSERT(other.bp!=0); if (is_equal(*other.bp)) return true; if (nops()>0) { for (unsigned i=0; ildegree(s); n<=this->degree(s); ++n) x += this->coeff(s,n)*power(s,n); // correct for lost fractional arguments and return return x + (*this - x).expand(); } /** Perform automatic non-interruptive symbolic evaluation on expression. */ ex basic::eval(int level) const { // There is nothing to do for basic objects: return this->hold(); } /** Evaluate object numerically. */ ex basic::evalf(int level) const { // There is nothing to do for basic objects: return *this; } /** Perform automatic symbolic evaluations on indexed expression that * contains this object as the base expression. */ ex basic::eval_indexed(const basic & i) const // this function can't take a "const ex & i" because that would result // in an infinite eval() loop { // There is nothing to do for basic objects return i.hold(); } /** Add two indexed expressions. They are guaranteed to be of class indexed * (or a subclass) and their indices are compatible. This function is used * internally by simplify_indexed(). * * @param self First indexed expression; it's base object is *this * @param other Second indexed expression * @return sum of self and other * @see ex::simplify_indexed() */ ex basic::add_indexed(const ex & self, const ex & other) const { return self + other; } /** Multiply an indexed expression with a scalar. This function is used * internally by simplify_indexed(). * * @param self Indexed expression; it's base object is *this * @param other Numeric value * @return product of self and other * @see ex::simplify_indexed() */ ex basic::scalar_mul_indexed(const ex & self, const numeric & other) const { return self * other; } /** Try to contract two indexed expressions that appear in the same product. * If a contraction exists, the function overwrites one or both of the * expressions and returns true. Otherwise it returns false. It is * guaranteed that both expressions are of class indexed (or a subclass) * and that at least one dummy index has been found. This functions is * used internally by simplify_indexed(). * * @param self Pointer to first indexed expression; it's base object is *this * @param other Pointer to second indexed expression * @param v The complete vector of factors * @return true if the contraction was successful, false otherwise * @see ex::simplify_indexed() */ bool basic::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { // Do nothing return false; } /** Substitute a set of objects by arbitrary expressions. The ex returned * will already be evaluated. */ ex basic::subs(const lst & ls, const lst & lr) const { GINAC_ASSERT(ls.nops() == lr.nops()); for (unsigned i=0; iderivative(s); while (!ndiff.is_zero() && // stop differentiating zeros nth>1) { ndiff = ndiff.diff(s); --nth; } return ndiff; } /** Return a vector containing the free indices of an expression. */ exvector basic::get_free_indices(void) const { return exvector(); // return an empty exvector } ex basic::simplify_ncmul(const exvector & v) const { return simplified_ncmul(v); } // protected /** Default implementation of ex::diff(). It simply throws an error message. * * @exception logic_error (differentiation not supported by this type) * @see ex::diff */ ex basic::derivative(const symbol & s) const { throw(std::logic_error("differentiation not supported by this type")); } /** Returns order relation between two objects of same type. This needs to be * implemented by each class. It may never return anything else than 0, * signalling equality, or +1 and -1 signalling inequality and determining * the canonical ordering. (Perl hackers will wonder why C++ doesn't feature * the spaceship operator <=> for denoting just this.) */ int basic::compare_same_type(const basic & other) const { return compare_pointers(this, &other); } /** Returns true if two objects of same type are equal. Normally needs * not be reimplemented as long as it wasn't overwritten by some parent * class, since it just calls compare_same_type(). The reason why this * function exists is that sometimes it is easier to determine equality * than an order relation and then it can be overridden. */ bool basic::is_equal_same_type(const basic & other) const { return this->compare_same_type(other)==0; } unsigned basic::return_type(void) const { return return_types::commutative; } unsigned basic::return_type_tinfo(void) const { return tinfo(); } /** Compute the hash value of an object and if it makes sense to store it in * the objects status_flags, do so. The method inherited from class basic * computes a hash value based on the type and hash values of possible * members. For this reason it is well suited for container classes but * atomic classes should override this implementation because otherwise they * would all end up with the same hashvalue. */ unsigned basic::calchash(void) const { unsigned v = golden_ratio_hash(tinfo()); for (unsigned i=0; i(this))->op(i).gethash(); } // mask out numeric hashes: v &= 0x7FFFFFFFU; // store calculated hash value only if object is already evaluated if (flags & status_flags::evaluated) { setflag(status_flags::hash_calculated); hashvalue = v; } return v; } /** Expand expression, i.e. multiply it out and return the result as a new * expression. */ ex basic::expand(unsigned options) const { return this->setflag(status_flags::expanded); } ////////// // non-virtual functions in this class ////////// // public /** Substitute objects in an expression (syntactic substitution) and return * the result as a new expression. There are two valid types of * replacement arguments: 1) a relational like object==ex and 2) a list of * relationals lst(object1==ex1,object2==ex2,...), which is converted to * subs(lst(object1,object2,...),lst(ex1,ex2,...)). */ ex basic::subs(const ex & e) const { if (e.info(info_flags::relation_equal)) { return subs(lst(e)); } if (!e.info(info_flags::list)) { throw(std::invalid_argument("basic::subs(ex): argument must be a list")); } lst ls; lst lr; for (unsigned i=0; ihash_other) return 1; unsigned typeid_this = tinfo(); unsigned typeid_other = other.tinfo(); if (typeid_thisprint(print_tree(std::cout)); // std::cout << " and "; // other.print(print_tree(std::cout)); // std::cout << std::endl; return -1; } if (typeid_this>typeid_other) { // std::cout << "hash collision, different types: " // << *this << " and " << other << std::endl; // this->print(print_tree(std::cout)); // std::cout << " and "; // other.print(print_tree(std::cout)); // std::cout << std::endl; return 1; } GINAC_ASSERT(typeid(*this)==typeid(other)); // int cmpval = compare_same_type(other); // if ((cmpval!=0) && (hash_this<0x80000000U)) { // std::cout << "hash collision, same type: " // << *this << " and " << other << std::endl; // this->print(print_tree(std::cout)); // std::cout << " and "; // other.print(print_tree(std::cout)); // std::cout << std::endl; // } // return cmpval; return compare_same_type(other); } /** Test for equality. * This is only a quick test, meaning objects should be in the same domain. * You might have to .expand(), .normal() objects first, depending on the * domain of your computation, to get a more reliable answer. * * @see is_equal_same_type */ bool basic::is_equal(const basic & other) const { if (this->gethash()!=other.gethash()) return false; if (this->tinfo()!=other.tinfo()) return false; GINAC_ASSERT(typeid(*this)==typeid(other)); return this->is_equal_same_type(other); } // protected /** Stop further evaluation. * * @see basic::eval */ const basic & basic::hold(void) const { return this->setflag(status_flags::evaluated); } /** Ensure the object may be modified without hurting others, throws if this * is not the case. */ void basic::ensure_if_modifiable(void) const { if (this->refcount>1) throw(std::runtime_error("cannot modify multiply referenced object")); } ////////// // static member variables ////////// // protected unsigned basic::precedence = 70; ////////// // global variables ////////// int max_recursion_level = 1024; } // namespace GiNaC