/** @file add.cpp * * Implementation of GiNaC's sums of expressions. */ /* * GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "add.h" #include "mul.h" #include "archive.h" #include "operators.h" #include "matrix.h" #include "utils.h" #include "clifford.h" #include "ncmul.h" #include "compiler.h" #include #include #include #include namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(add, expairseq, print_func(&add::do_print). print_func(&add::do_print_latex). print_func(&add::do_print_csrc). print_func(&add::do_print_tree). print_func(&add::do_print_python_repr)) ////////// // default constructor ////////// add::add() { } ////////// // other constructors ////////// // public add::add(const ex & lh, const ex & rh) { overall_coeff = _ex0; construct_from_2_ex(lh,rh); GINAC_ASSERT(is_canonical()); } add::add(const exvector & v) { overall_coeff = _ex0; construct_from_exvector(v); GINAC_ASSERT(is_canonical()); } add::add(const epvector & v) { overall_coeff = _ex0; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } add::add(const epvector & v, const ex & oc) { overall_coeff = oc; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } add::add(epvector && vp) { overall_coeff = _ex0; construct_from_epvector(std::move(vp)); GINAC_ASSERT(is_canonical()); } add::add(epvector && vp, const ex & oc) { overall_coeff = oc; construct_from_epvector(std::move(vp)); GINAC_ASSERT(is_canonical()); } ////////// // archiving ////////// GINAC_BIND_UNARCHIVER(add); ////////// // functions overriding virtual functions from base classes ////////// // public void add::print_add(const print_context & c, const char *openbrace, const char *closebrace, const char *mul_sym, unsigned level) const { if (precedence() <= level) c.s << openbrace << '('; numeric coeff; bool first = true; // First print the overall numeric coefficient, if present if (!overall_coeff.is_zero()) { overall_coeff.print(c, 0); first = false; } // Then proceed with the remaining factors for (auto & it : seq) { coeff = ex_to(it.coeff); if (!first) { if (coeff.csgn() == -1) c.s << '-'; else c.s << '+'; } else { if (coeff.csgn() == -1) c.s << '-'; first = false; } if (!coeff.is_equal(*_num1_p) && !coeff.is_equal(*_num_1_p)) { if (coeff.is_rational()) { if (coeff.is_negative()) (-coeff).print(c); else coeff.print(c); } else { if (coeff.csgn() == -1) (-coeff).print(c, precedence()); else coeff.print(c, precedence()); } c.s << mul_sym; } it.rest.print(c, precedence()); } if (precedence() <= level) c.s << ')' << closebrace; } void add::do_print(const print_context & c, unsigned level) const { print_add(c, "", "", "*", level); } void add::do_print_latex(const print_latex & c, unsigned level) const { print_add(c, "{", "}", " ", level); } void add::do_print_csrc(const print_csrc & c, unsigned level) const { if (precedence() <= level) c.s << "("; // Print arguments, separated by "+" or "-" char separator = ' '; for (auto & it : seq) { // If the coefficient is negative, separator is "-" if (it.coeff.is_equal(_ex_1) || ex_to(it.coeff).numer().is_equal(*_num_1_p)) separator = '-'; c.s << separator; if (it.coeff.is_equal(_ex1) || it.coeff.is_equal(_ex_1)) { it.rest.print(c, precedence()); } else if (ex_to(it.coeff).numer().is_equal(*_num1_p) || ex_to(it.coeff).numer().is_equal(*_num_1_p)) { it.rest.print(c, precedence()); c.s << '/'; ex_to(it.coeff).denom().print(c, precedence()); } else { it.coeff.print(c, precedence()); c.s << '*'; it.rest.print(c, precedence()); } separator = '+'; } if (!overall_coeff.is_zero()) { if (overall_coeff.info(info_flags::positive) || is_a(c) || !overall_coeff.info(info_flags::real)) // sign inside ctor argument c.s << '+'; overall_coeff.print(c, precedence()); } if (precedence() <= level) c.s << ")"; } void add::do_print_python_repr(const print_python_repr & c, unsigned level) const { c.s << class_name() << '('; op(0).print(c); for (size_t i=1; i::min(); if (!overall_coeff.is_zero()) deg = 0; // Find maximum of degrees of individual terms for (auto & i : seq) { int cur_deg = i.rest.degree(s); if (cur_deg > deg) deg = cur_deg; } return deg; } int add::ldegree(const ex & s) const { int deg = std::numeric_limits::max(); if (!overall_coeff.is_zero()) deg = 0; // Find minimum of degrees of individual terms for (auto & i : seq) { int cur_deg = i.rest.ldegree(s); if (cur_deg < deg) deg = cur_deg; } return deg; } ex add::coeff(const ex & s, int n) const { epvector coeffseq; epvector coeffseq_cliff; int rl = clifford_max_label(s); bool do_clifford = (rl != -1); bool nonscalar = false; // Calculate sum of coefficients in each term for (auto & i : seq) { ex restcoeff = i.rest.coeff(s, n); if (!restcoeff.is_zero()) { if (do_clifford) { if (clifford_max_label(restcoeff) == -1) { coeffseq_cliff.push_back(expair(ncmul(restcoeff, dirac_ONE(rl)), i.coeff)); } else { coeffseq_cliff.push_back(expair(restcoeff, i.coeff)); nonscalar = true; } } coeffseq.push_back(expair(restcoeff, i.coeff)); } } return dynallocate(nonscalar ? std::move(coeffseq_cliff) : std::move(coeffseq), n==0 ? overall_coeff : _ex0); } /** Perform automatic term rewriting rules in this class. In the following * x stands for a symbolic variables of type ex and c stands for such * an expression that contain a plain number. * - +(;c) -> c * - +(x;0) -> x */ ex add::eval() const { if (flags & status_flags::evaluated) { GINAC_ASSERT(seq.size()>0); GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_zero()); return *this; } const epvector evaled = evalchildren(); if (unlikely(!evaled.empty())) { // start over evaluating a new object return dynallocate(std::move(evaled), overall_coeff); } #ifdef DO_GINAC_ASSERT for (auto & i : seq) { GINAC_ASSERT(!is_exactly_a(i.rest)); } #endif // def DO_GINAC_ASSERT size_t seq_size = seq.size(); if (seq_size == 0) { // +(;c) -> c return overall_coeff; } else if (seq_size == 1 && overall_coeff.is_zero()) { // +(x;0) -> x return recombine_pair_to_ex(*(seq.begin())); } else if (!overall_coeff.is_zero() && seq[0].rest.return_type() != return_types::commutative) { throw (std::logic_error("add::eval(): sum of non-commutative objects has non-zero numeric term")); } return this->hold(); } ex add::evalm() const { // Evaluate children first and add up all matrices. Stop if there's one // term that is not a matrix. epvector s; s.reserve(seq.size()); bool all_matrices = true; bool first_term = true; matrix sum; for (auto & it : seq) { const ex &m = recombine_pair_to_ex(it).evalm(); s.push_back(split_ex_to_pair(m)); if (is_a(m)) { if (first_term) { sum = ex_to(m); first_term = false; } else sum = sum.add(ex_to(m)); } else all_matrices = false; } if (all_matrices) return sum + overall_coeff; else return dynallocate(std::move(s), overall_coeff); } ex add::conjugate() const { std::unique_ptr v(nullptr); for (size_t i=0; ipush_back(op(i).conjugate()); continue; } ex term = op(i); ex ccterm = term.conjugate(); if (are_ex_trivially_equal(term, ccterm)) continue; v.reset(new exvector); v->reserve(nops()); for (size_t j=0; jpush_back(op(j)); v->push_back(ccterm); } if (v) { return add(std::move(*v)); } return *this; } ex add::real_part() const { epvector v; v.reserve(seq.size()); for (auto & it : seq) if (it.coeff.info(info_flags::real)) { ex rp = it.rest.real_part(); if (!rp.is_zero()) v.push_back(expair(rp, it.coeff)); } else { ex rp = recombine_pair_to_ex(it).real_part(); if (!rp.is_zero()) v.push_back(split_ex_to_pair(rp)); } return dynallocate(std::move(v), overall_coeff.real_part()); } ex add::imag_part() const { epvector v; v.reserve(seq.size()); for (auto & it : seq) if (it.coeff.info(info_flags::real)) { ex ip = it.rest.imag_part(); if (!ip.is_zero()) v.push_back(expair(ip, it.coeff)); } else { ex ip = recombine_pair_to_ex(it).imag_part(); if (!ip.is_zero()) v.push_back(split_ex_to_pair(ip)); } return dynallocate(std::move(v), overall_coeff.imag_part()); } ex add::eval_ncmul(const exvector & v) const { if (seq.empty()) return inherited::eval_ncmul(v); else return seq.begin()->rest.eval_ncmul(v); } // protected /** Implementation of ex::diff() for a sum. It differentiates each term. * @see ex::diff */ ex add::derivative(const symbol & y) const { epvector s; s.reserve(seq.size()); // Only differentiate the "rest" parts of the expairs. This is faster // than the default implementation in basic::derivative() although // if performs the same function (differentiate each term). for (auto & it : seq) s.push_back(expair(it.rest.diff(y), it.coeff)); return dynallocate(std::move(s)); } int add::compare_same_type(const basic & other) const { return inherited::compare_same_type(other); } unsigned add::return_type() const { if (seq.empty()) return return_types::commutative; else return seq.begin()->rest.return_type(); } return_type_t add::return_type_tinfo() const { if (seq.empty()) return make_return_type_t(); else return seq.begin()->rest.return_type_tinfo(); } // Note: do_index_renaming is ignored because it makes no sense for an add. ex add::thisexpairseq(const epvector & v, const ex & oc, bool do_index_renaming) const { return dynallocate(v, oc); } // Note: do_index_renaming is ignored because it makes no sense for an add. ex add::thisexpairseq(epvector && vp, const ex & oc, bool do_index_renaming) const { return dynallocate(std::move(vp), oc); } expair add::split_ex_to_pair(const ex & e) const { if (is_exactly_a(e)) { const mul &mulref(ex_to(e)); const ex &numfactor = mulref.overall_coeff; if (numfactor.is_equal(_ex1)) return expair(e, _ex1); mul & mulcopy = dynallocate(mulref); mulcopy.overall_coeff = _ex1; mulcopy.clearflag(status_flags::evaluated | status_flags::hash_calculated); return expair(mulcopy, numfactor); } return expair(e,_ex1); } expair add::combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const { GINAC_ASSERT(is_exactly_a(c)); if (is_exactly_a(e)) { const mul &mulref(ex_to(e)); const ex &numfactor = mulref.overall_coeff; if (likely(numfactor.is_equal(_ex1))) return expair(e, c); mul & mulcopy = dynallocate(mulref); mulcopy.overall_coeff = _ex1; mulcopy.clearflag(status_flags::evaluated | status_flags::hash_calculated); if (c.is_equal(_ex1)) return expair(mulcopy, numfactor); else return expair(mulcopy, ex_to(numfactor).mul_dyn(ex_to(c))); } else if (is_exactly_a(e)) { if (c.is_equal(_ex1)) return expair(e, _ex1); if (e.is_equal(_ex1)) return expair(c, _ex1); return expair(ex_to(e).mul_dyn(ex_to(c)), _ex1); } return expair(e, c); } expair add::combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const { GINAC_ASSERT(is_exactly_a(p.coeff)); GINAC_ASSERT(is_exactly_a(c)); if (is_exactly_a(p.rest)) { GINAC_ASSERT(ex_to(p.coeff).is_equal(*_num1_p)); // should be normalized return expair(ex_to(p.rest).mul_dyn(ex_to(c)),_ex1); } return expair(p.rest,ex_to(p.coeff).mul_dyn(ex_to(c))); } ex add::recombine_pair_to_ex(const expair & p) const { if (ex_to(p.coeff).is_equal(*_num1_p)) return p.rest; else return dynallocate(p.rest, p.coeff); } ex add::expand(unsigned options) const { epvector expanded = expandchildren(options); if (expanded.empty()) return (options == 0) ? setflag(status_flags::expanded) : *this; return dynallocate(std::move(expanded), overall_coeff).setflag(options == 0 ? status_flags::expanded : 0); } } // namespace GiNaC