/** @file add.cpp * * Implementation of GiNaC's sums of expressions. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "add.h" #include "mul.h" #include "matrix.h" #include "archive.h" #include "debugmsg.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(add, expairseq) ////////// // default constructor, destructor, copy constructor assignment operator and helpers ////////// add::add() { debugmsg("add default constructor",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_add; } DEFAULT_COPY(add) DEFAULT_DESTROY(add) ////////// // other constructors ////////// // public add::add(const ex & lh, const ex & rh) { debugmsg("add constructor from ex,ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_add; overall_coeff = _ex0(); construct_from_2_ex(lh,rh); GINAC_ASSERT(is_canonical()); } add::add(const exvector & v) { debugmsg("add constructor from exvector",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_add; overall_coeff = _ex0(); construct_from_exvector(v); GINAC_ASSERT(is_canonical()); } add::add(const epvector & v) { debugmsg("add constructor from epvector",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_add; overall_coeff = _ex0(); construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } add::add(const epvector & v, const ex & oc) { debugmsg("add constructor from epvector,ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_add; overall_coeff = oc; construct_from_epvector(v); GINAC_ASSERT(is_canonical()); } add::add(epvector * vp, const ex & oc) { debugmsg("add constructor from epvector *,ex",LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_add; GINAC_ASSERT(vp!=0); overall_coeff = oc; construct_from_epvector(*vp); delete vp; GINAC_ASSERT(is_canonical()); } ////////// // archiving ////////// DEFAULT_ARCHIVING(add) ////////// // functions overriding virtual functions from bases classes ////////// // public void add::print(const print_context & c, unsigned level) const { debugmsg("add print", LOGLEVEL_PRINT); if (is_of_type(c, print_tree)) { inherited::print(c, level); } else if (is_of_type(c, print_csrc)) { if (precedence() <= level) c.s << "("; // Print arguments, separated by "+" epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { // If the coefficient is -1, it is replaced by a single minus sign if (it->coeff.compare(_num1()) == 0) { it->rest.bp->print(c, precedence()); } else if (it->coeff.compare(_num_1()) == 0) { c.s << "-"; it->rest.bp->print(c, precedence()); } else if (ex_to_numeric(it->coeff).numer().compare(_num1()) == 0) { it->rest.bp->print(c, precedence()); c.s << "/"; ex_to_numeric(it->coeff).denom().print(c, precedence()); } else if (ex_to_numeric(it->coeff).numer().compare(_num_1()) == 0) { c.s << "-"; it->rest.bp->print(c, precedence()); c.s << "/"; ex_to_numeric(it->coeff).denom().print(c, precedence()); } else { it->coeff.bp->print(c, precedence()); c.s << "*"; it->rest.bp->print(c, precedence()); } // Separator is "+", except if the following expression would have a leading minus sign it++; if (it != itend && !(it->coeff.compare(_num0()) < 0 || (it->coeff.compare(_num1()) == 0 && is_ex_exactly_of_type(it->rest, numeric) && it->rest.compare(_num0()) < 0))) c.s << "+"; } if (!overall_coeff.is_zero()) { if (overall_coeff.info(info_flags::positive)) c.s << '+'; overall_coeff.bp->print(c, precedence()); } if (precedence() <= level) c.s << ")"; } else { if (precedence() <= level) { if (is_of_type(c, print_latex)) c.s << "{("; else c.s << "("; } numeric coeff; bool first = true; // First print the overall numeric coefficient, if present if (!overall_coeff.is_zero()) { if (!is_of_type(c, print_tree)) overall_coeff.print(c, 0); else overall_coeff.print(c, precedence()); first = false; } // Then proceed with the remaining factors epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { coeff = ex_to_numeric(it->coeff); if (!first) { if (coeff.csgn() == -1) c.s << '-'; else c.s << '+'; } else { if (coeff.csgn() == -1) c.s << '-'; first = false; } if (!coeff.is_equal(_num1()) && !coeff.is_equal(_num_1())) { if (coeff.is_rational()) { if (coeff.is_negative()) (-coeff).print(c); else coeff.print(c); } else { if (coeff.csgn() == -1) (-coeff).print(c, precedence()); else coeff.print(c, precedence()); } if (is_of_type(c, print_latex)) c.s << ' '; else c.s << '*'; } it->rest.print(c, precedence()); it++; } if (precedence() <= level) { if (is_of_type(c, print_latex)) c.s << ")}"; else c.s << ")"; } } } bool add::info(unsigned inf) const { switch (inf) { case info_flags::polynomial: case info_flags::integer_polynomial: case info_flags::cinteger_polynomial: case info_flags::rational_polynomial: case info_flags::crational_polynomial: case info_flags::rational_function: { for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { if (!(recombine_pair_to_ex(*i).info(inf))) return false; } return overall_coeff.info(inf); } case info_flags::algebraic: { for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { if ((recombine_pair_to_ex(*i).info(inf))) return true; } return false; } } return inherited::info(inf); } int add::degree(const ex & s) const { int deg = INT_MIN; if (!overall_coeff.is_equal(_ex0())) deg = 0; int cur_deg; for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { cur_deg = (*cit).rest.degree(s); if (cur_deg>deg) deg = cur_deg; } return deg; } int add::ldegree(const ex & s) const { int deg = INT_MAX; if (!overall_coeff.is_equal(_ex0())) deg = 0; int cur_deg; for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { cur_deg = (*cit).rest.ldegree(s); if (cur_degrest.coeff(s,n); if (!restcoeff.is_zero()) coeffseq.push_back(combine_ex_with_coeff_to_pair(restcoeff,it->coeff)); ++it; } return (new add(coeffseq, n==0 ? overall_coeff : default_overall_coeff()))->setflag(status_flags::dynallocated); } ex add::eval(int level) const { // simplifications: +(;c) -> c // +(x;1) -> x debugmsg("add eval",LOGLEVEL_MEMBER_FUNCTION); epvector * evaled_seqp = evalchildren(level); if (evaled_seqp!=0) { // do more evaluation later return (new add(evaled_seqp,overall_coeff))-> setflag(status_flags::dynallocated); } #ifdef DO_GINAC_ASSERT for (epvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { GINAC_ASSERT(!is_ex_exactly_of_type((*cit).rest,add)); if (is_ex_exactly_of_type((*cit).rest,numeric)) dbgprint(); GINAC_ASSERT(!is_ex_exactly_of_type((*cit).rest,numeric)); } #endif // def DO_GINAC_ASSERT if (flags & status_flags::evaluated) { GINAC_ASSERT(seq.size()>0); GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_zero()); return *this; } int seq_size = seq.size(); if (seq_size==0) { // +(;c) -> c return overall_coeff; } else if ((seq_size==1) && overall_coeff.is_equal(_ex0())) { // +(x;0) -> x return recombine_pair_to_ex(*(seq.begin())); } return this->hold(); } ex add::evalm(void) const { // Evaluate children first and add up all matrices. Stop if there's one // term that is not a matrix. epvector *s = new epvector; s->reserve(seq.size()); bool all_matrices = true; bool first_term = true; matrix sum; epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { const ex &m = recombine_pair_to_ex(*it).evalm(); s->push_back(split_ex_to_pair(m)); if (is_ex_of_type(m, matrix)) { if (first_term) { sum = ex_to_matrix(m); first_term = false; } else sum = sum.add(ex_to_matrix(m)); } else all_matrices = false; it++; } if (all_matrices) return sum + overall_coeff; else return (new add(s, overall_coeff))->setflag(status_flags::dynallocated); } ex add::simplify_ncmul(const exvector & v) const { if (seq.size()==0) { return inherited::simplify_ncmul(v); } return (*seq.begin()).rest.simplify_ncmul(v); } // protected /** Implementation of ex::diff() for a sum. It differentiates each term. * @see ex::diff */ ex add::derivative(const symbol & s) const { // D(a+b+c)=D(a)+D(b)+D(c) return (new add(diffchildren(s)))->setflag(status_flags::dynallocated); } int add::compare_same_type(const basic & other) const { return inherited::compare_same_type(other); } bool add::is_equal_same_type(const basic & other) const { return inherited::is_equal_same_type(other); } unsigned add::return_type(void) const { if (seq.size()==0) { return return_types::commutative; } return (*seq.begin()).rest.return_type(); } unsigned add::return_type_tinfo(void) const { if (seq.size()==0) { return tinfo_key; } return (*seq.begin()).rest.return_type_tinfo(); } ex add::thisexpairseq(const epvector & v, const ex & oc) const { return (new add(v,oc))->setflag(status_flags::dynallocated); } ex add::thisexpairseq(epvector * vp, const ex & oc) const { return (new add(vp,oc))->setflag(status_flags::dynallocated); } expair add::split_ex_to_pair(const ex & e) const { if (is_ex_exactly_of_type(e,mul)) { const mul &mulref = ex_to_mul(e); ex numfactor = mulref.overall_coeff; mul *mulcopyp = new mul(mulref); mulcopyp->overall_coeff = _ex1(); mulcopyp->clearflag(status_flags::evaluated); mulcopyp->clearflag(status_flags::hash_calculated); mulcopyp->setflag(status_flags::dynallocated); return expair(*mulcopyp,numfactor); } return expair(e,_ex1()); } expair add::combine_ex_with_coeff_to_pair(const ex & e, const ex & c) const { GINAC_ASSERT(is_ex_exactly_of_type(c, numeric)); if (is_ex_exactly_of_type(e, mul)) { const mul &mulref = ex_to_mul(e); ex numfactor = mulref.overall_coeff; mul *mulcopyp = new mul(mulref); mulcopyp->overall_coeff = _ex1(); mulcopyp->clearflag(status_flags::evaluated); mulcopyp->clearflag(status_flags::hash_calculated); mulcopyp->setflag(status_flags::dynallocated); if (are_ex_trivially_equal(c, _ex1())) return expair(*mulcopyp, numfactor); else if (are_ex_trivially_equal(numfactor, _ex1())) return expair(*mulcopyp, c); else return expair(*mulcopyp, ex_to_numeric(numfactor).mul_dyn(ex_to_numeric(c))); } else if (is_ex_exactly_of_type(e, numeric)) { if (are_ex_trivially_equal(c, _ex1())) return expair(e, _ex1()); return expair(ex_to_numeric(e).mul_dyn(ex_to_numeric(c)), _ex1()); } return expair(e, c); } expair add::combine_pair_with_coeff_to_pair(const expair & p, const ex & c) const { GINAC_ASSERT(is_ex_exactly_of_type(p.coeff,numeric)); GINAC_ASSERT(is_ex_exactly_of_type(c,numeric)); if (is_ex_exactly_of_type(p.rest,numeric)) { GINAC_ASSERT(ex_to_numeric(p.coeff).is_equal(_num1())); // should be normalized return expair(ex_to_numeric(p.rest).mul_dyn(ex_to_numeric(c)),_ex1()); } return expair(p.rest,ex_to_numeric(p.coeff).mul_dyn(ex_to_numeric(c))); } ex add::recombine_pair_to_ex(const expair & p) const { if (ex_to_numeric(p.coeff).is_equal(_num1())) return p.rest; else return p.rest*p.coeff; } ex add::expand(unsigned options) const { if (flags & status_flags::expanded) return *this; epvector * vp = expandchildren(options); if (vp==0) { // the terms have not changed, so it is safe to declare this expanded setflag(status_flags::expanded); return *this; } return (new add(vp,overall_coeff))->setflag(status_flags::expanded | status_flags::dynallocated); } } // namespace GiNaC