/** @file time_antipode.cpp * * This is a beautiful example that calculates the counterterm for the * overall divergence of some special sorts of Feynman diagrams in a massless * Yukawa theory. For this end it computes the antipode of the corresponding * decorated rooted tree using dimensional regularization in the parameter * x==-(D-4)/2, which leads to a Laurent series in x. The renormalization * scheme used is the minimal subtraction scheme (MS). From an efficiency * point of view it boils down to power series expansion. It also has quite * an intriguing check for consistency, which is why we include it here. * * This program is based on work by Isabella Bierenbaum and Dirk Kreimer. * For details, please see the diploma theses of Isabella Bierenbaum. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "times.h" #include #include // whether to run this beast or not: static const bool do_test = true; typedef pair ijpair; typedef pair child; const constant TrOne("Tr[One]", numeric(4)); /* Extract only the divergent part of a series and discard the rest. */ static ex div_part(const ex &exarg, const symbol &x, unsigned grad) { unsigned order = grad; ex exser; // maybe we have to generate more terms on the series (obnoxious): do { exser = exarg.series(x==0, order); ++order; } while (exser.degree(x) < 0); ex exser_trunc; for (int i=exser.ldegree(x); i<0; ++i) exser_trunc += exser.coeff(x,i)*pow(x,i); // NB: exser_trunc is by construction collected in x. return exser_trunc; } /* F_ab(a, i, b, j, "x") is a common pattern in all vertex evaluators. */ static ex F_ab(int a, int i, int b, int j, const symbol &x) { if ((i==0 && a<=0) || (j==0 && b<=0)) return 0; else return (tgamma(2-a-(i+1)*x)* tgamma(2-b-(1+j)*x)* tgamma(a+b-2+(1+i+j)*x)/ tgamma(a+i*x)/ tgamma(b+j*x)/tgamma(4-a-b-(2+i+j)*x)); } /* Abstract base class (ABC) for all types of vertices. */ class vertex { public: vertex(ijpair ij = ijpair(0,0)) : indices(ij) { } void increment_indices(const ijpair &ind) { indices.first += ind.first; indices.second += ind.second; } virtual ~vertex() { } virtual vertex* copy(void) const = 0; virtual ijpair get_increment(void) const { return indices; } virtual ex evaluate(const symbol &x) const = 0; protected: ijpair indices; }; /* * Class of vertices of type Sigma. */ class Sigma : public vertex { public: Sigma(ijpair ij = ijpair(0,0), bool f = true) : vertex(ij), flag(f) { } vertex* copy(void) const { return new Sigma(*this); } ijpair get_increment(void) const; ex evaluate(const symbol &x) const; private: bool flag; }; ijpair Sigma::get_increment(void) const { if (flag == true) return ijpair(indices.first+1, indices.second); else return ijpair(indices.first, indices.second+1); } ex Sigma::evaluate(const symbol &x) const { int i = indices.first; int j = indices.second; return (F_ab(0,i,1,j,x)+F_ab(1,i,1,j,x)-F_ab(1,i,0,j,x))/2; } /* *Class of vertices of type Gamma. */ class Gamma : public vertex { public: Gamma(ijpair ij = ijpair(0,0)) : vertex(ij) { } vertex* copy(void) const { return new Gamma(*this); } ijpair get_increment(void) const { return ijpair(indices.first+indices.second+1, 0); } ex evaluate(const symbol &x) const; private: }; ex Gamma::evaluate(const symbol &x) const { int i = indices.first; int j = indices.second; return F_ab(1,i,1,j,x); } /* * Class of vertices of type Vacuum. */ class Vacuum : public vertex { public: Vacuum(ijpair ij = ijpair(0,0)) : vertex(ij) { } vertex* copy(void) const { return new Vacuum(*this); } ijpair get_increment() const { return ijpair(0, indices.first+indices.second+1); } ex evaluate(const symbol &x) const; private: }; ex Vacuum::evaluate(const symbol &x) const { int i = indices.first; int j = indices.second; return (-TrOne*(F_ab(0,i,1,j,x)-F_ab(1,i,1,j,x)+F_ab(1,i,0,j,x)))/2; } /* * Class of nodes (or trees or subtrees), including list of children. */ class node { public: node(const vertex &v) { vert = v.copy(); } node(const node &n) { vert = (n.vert)->copy(); children = n.children; } ~node() { delete vert; } void add_child(const node &, bool = false); ex evaluate(const symbol &x, unsigned grad) const; unsigned total_edges(void) const; private: vertex *vert; list children; }; void node::add_child(const node &childnode, bool cut) { children.push_back(child(childnode, cut)); if(!cut) vert->increment_indices(childnode.vert->get_increment()); } ex node::evaluate(const symbol &x, unsigned grad) const { ex product = 1; for (list::const_iterator i=children.begin(); i!=children.end(); ++i) { if (!i->second) product *= i->first.evaluate(x,grad); else product *= -div_part(i->first.evaluate(x,grad),x,grad); } return (product * vert->evaluate(x)); } unsigned node::total_edges(void) const { unsigned accu = 0; for (list::const_iterator i=children.begin(); i!=children.end(); ++i) { accu += i->first.total_edges(); ++accu; } return accu; } /* * These operators let us write down trees in an intuitive way, by adding * arbitrarily complex children to a given vertex. The eye candy that can be * produced with it makes detection of errors much simpler than with code * written using calls to node's method add_child() because it allows for * editor-assisted indentation. */ node operator+(const node &n, const child &c) { node nn(n); nn.add_child(c.first, c.second); return nn; } void operator+=(node &n, const child &c) { n.add_child(c.first, c.second); } /* * Build this sample rooted tree characterized by a certain combination of * cut or uncut edges as specified by the unsigned parameter: * Gamma * / \ * Sigma Vacuum * / \ / \ * Sigma Sigma Sigma0 Sigma */ static node mytree(unsigned cuts=0) { return (Gamma() + child(Sigma() + child(Sigma(), bool(cuts & 1)) + child(Sigma(), bool(cuts & 2)), bool(cuts & 4)) + child(Vacuum() + child(Sigma(ijpair(0,0),false), bool(cuts & 8)) + child(Sigma(), bool(cuts & 16)), bool(cuts & 32))); } static unsigned test(void) { const symbol x("x"); const unsigned edges = mytree().total_edges(); const unsigned vertices = edges+1; // fill a vector of all possible 2^edges combinations of cuts... vector counter; for (unsigned i=0; i<(1U<::iterator i=counter.begin(); i!=counter.end(); ++i) accu += i->evaluate(x,vertices); // ...which is only interesting term-wise in the series expansion... ex result = accu.series(x==0,vertices).expand().normal(); // ...and has the nice property that in each term all the Eulers cancel: if (result.has(Euler)) { clog << "The antipode was miscalculated\nAntipode==" << result << "\nshould not have any occurrence of Euler" << endl; return 1; } return 0; } unsigned time_antipode(void) { unsigned result = 0; unsigned count = 0; timer jaeger_le_coultre; double time = .0; cout << "timing computation of an antipode in Yukawa theory" << flush; clog << "-------computation of an antipode in Yukawa theory" << endl; if (do_test) { jaeger_le_coultre.start(); // correct for very small times: do { result = test(); ++count; } while ((time=jaeger_le_coultre.read())<0.1 && !result); cout << '.' << flush; if (!result) { cout << " passed "; clog << "(no output)" << endl; } else { cout << " failed "; } cout << int(1000*(time/count))*0.001 << 's' << endl; } else { cout << " disabled" << endl; clog << "(no output)" << endl; } return result; }