// check/inifcns_consist.cpp /* This test routine applies assorted tests on initially known higher level * functions. */ #include /* Simple tests on the sine trigonometric function. */ static unsigned inifcns_consist_sin(void) { unsigned result = 0; bool errorflag; // sin(n*Pi) == 0? errorflag = false; for (int n=-10; n<=10; ++n) { if ( sin(n*Pi).eval() != numeric(0) || !sin(n*Pi).eval().info(info_flags::integer) ) errorflag = true; } if ( errorflag ) { clog << "sin(n*Pi) with integer n does not always return exact 0" << endl; ++result; } // sin((n+1/2)*Pi) == {+|-}1? errorflag = false; for (int n=-10; n<=10; ++n) { if ( ! sin((n+numeric(1,2))*Pi).eval().info(info_flags::integer) || !(sin((n+numeric(1,2))*Pi).eval() == numeric(1) || sin((n+numeric(1,2))*Pi).eval() == numeric(-1)) ) errorflag = true; } if ( errorflag ) { clog << "sin((n+1/2)*Pi) with integer n does not always return exact {+|-}1" << endl; ++result; } return result; } /* Simple tests on the cosine trigonometric function. */ static unsigned inifcns_consist_cos(void) { unsigned result = 0; bool errorflag; // cos((n+1/2)*Pi) == 0? errorflag = false; for (int n=-10; n<=10; ++n) { if ( cos((n+numeric(1,2))*Pi).eval() != numeric(0) || !cos((n+numeric(1,2))*Pi).eval().info(info_flags::integer) ) errorflag = true; } if ( errorflag ) { clog << "cos((n+1/2)*Pi) with integer n does not always return exact 0" << endl; ++result; } // cos(n*Pi) == 0? errorflag = false; for (int n=-10; n<=10; ++n) { if ( ! cos(n*Pi).eval().info(info_flags::integer) || !(cos(n*Pi).eval() == numeric(1) || cos(n*Pi).eval() == numeric(-1)) ) errorflag = true; } if ( errorflag ) { clog << "cos(n*Pi) with integer n does not always return exact {+|-}1" << endl; ++result; } return result; } /* Assorted tests on other transcendental functions. */ static unsigned inifcns_consist_trans(void) { unsigned result = 0; symbol x("x"); ex chk; chk = asin(1)-acos(0); if (!chk.is_zero()) { clog << "asin(1)-acos(0) erroneously returned " << chk << " instead of 0" << endl; ++result; } // arbitrary check of type sin(f(x)): chk = pow(sin(acos(x)),2) + pow(sin(asin(x)),2) - (1+pow(x,2))*pow(sin(atan(x)),2); if (chk != 1-pow(x,2)) { clog << "sin(acos(x))^2 + sin(asin(x))^2 - (1+x^2)*sin(atan(x))^2 " << "erroneously returned " << chk << " instead of 1-x^2" << endl; ++result; } // arbitrary check of type cos(f(x)): chk = pow(cos(acos(x)),2) + pow(cos(asin(x)),2) - (1+pow(x,2))*pow(cos(atan(x)),2); if (!chk.is_zero()) { clog << "cos(acos(x))^2 + cos(asin(x))^2 - (1+x^2)*cos(atan(x))^2 " << "erroneously returned " << chk << " instead of 0" << endl; ++result; } // arbitrary check of type tan(f(x)): chk = tan(acos(x))*tan(asin(x)) - tan(atan(x)); if (chk != 1-x) { clog << "tan(acos(x))*tan(asin(x)) - tan(atan(x)) " << "erroneously returned " << chk << " instead of -x+1" << endl; ++result; } // arbitrary check of type sinh(f(x)): chk = -pow(sinh(acosh(x)),2).expand()*pow(sinh(atanh(x)),2) - pow(sinh(asinh(x)),2); if (!chk.is_zero()) { clog << "expand(-(sinh(acosh(x)))^2)*(sinh(atanh(x))^2) - sinh(asinh(x))^2 " << "erroneously returned " << chk << " instead of 0" << endl; ++result; } // arbitrary check of type cosh(f(x)): chk = (pow(cosh(asinh(x)),2) - 2*pow(cosh(acosh(x)),2)) * pow(cosh(atanh(x)),2); if (chk != 1) { clog << "(cosh(asinh(x))^2 - 2*cosh(acosh(x))^2) * cosh(atanh(x))^2 " << "erroneously returned " << chk << " instead of 1" << endl; ++result; } // arbitrary check of type tanh(f(x)): chk = (pow(tanh(asinh(x)),-2) - pow(tanh(acosh(x)),2)).expand() * pow(tanh(atanh(x)),2); if (chk != 2) { clog << "expand(tanh(acosh(x))^2 - tanh(asinh(x))^(-2)) * tanh(atanh(x))^2 " << "erroneously returned " << chk << " instead of 2" << endl; ++result; } return result; } /* Simple tests on the Gamma combinatorial function. We stuff in arguments * where the result exists in closed form and check if it's ok. */ static unsigned inifcns_consist_gamma(void) { unsigned result = 0; ex e; e = gamma(ex(1)); for (int i=2; i<8; ++i) { e += gamma(ex(i)); } if ( e != numeric(874) ) { clog << "gamma(1)+...+gamma(7) erroneously returned " << e << " instead of 874" << endl; ++result; } e = gamma(ex(1)); for (int i=2; i<8; ++i) { e *= gamma(ex(i)); } if ( e != numeric(24883200) ) { clog << "gamma(1)*...*gamma(7) erroneously returned " << e << " instead of 24883200" << endl; ++result; } e = gamma(ex(numeric(5, 2)))*gamma(ex(numeric(9, 2)))*64; if ( e != 315*Pi ) { clog << "64*gamma(5/2)*gamma(9/2) erroneously returned " << e << " instead of 315*Pi" << endl; ++result; } e = gamma(ex(numeric(-13, 2))); for (int i=-13; i<7; i=i+2) { e += gamma(ex(numeric(i, 2))); } e = (e*gamma(ex(numeric(15, 2)))*numeric(512)); if ( e != numeric(633935)*Pi ) { clog << "512*(gamma(-13/2)+...+gamma(5/2))*gamma(15/2) erroneously returned " << e << " instead of 633935*Pi" << endl; ++result; } return result; } unsigned inifcns_consist(void) { unsigned result = 0; cout << "checking consistency of symbolic functions..." << flush; clog << "---------consistency of symbolic functions:" << endl; result += inifcns_consist_sin(); result += inifcns_consist_cos(); result += inifcns_consist_trans(); result += inifcns_consist_gamma(); if ( !result ) { cout << " passed "; clog << "(no output)" << endl; } else { cout << " failed "; } return result; }