/** @file inifcns_consist.cpp * * This test routine applies assorted tests on initially known higher level * functions. */ /* * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #ifndef NO_GINAC_NAMESPACE using namespace GiNaC; #endif // ndef NO_GINAC_NAMESPACE /* Simple tests on the sine trigonometric function. */ static unsigned inifcns_consist_sin(void) { unsigned result = 0; bool errorflag; // sin(n*Pi) == 0? errorflag = false; for (int n=-10; n<=10; ++n) { if ( sin(n*Pi).eval() != numeric(0) || !sin(n*Pi).eval().info(info_flags::integer)) errorflag = true; } if (errorflag) { clog << "sin(n*Pi) with integer n does not always return exact 0" << endl; ++result; } // sin((n+1/2)*Pi) == {+|-}1? errorflag = false; for (int n=-10; n<=10; ++n) { if (! sin((n+numeric(1,2))*Pi).eval().info(info_flags::integer) || !(sin((n+numeric(1,2))*Pi).eval() == numeric(1) || sin((n+numeric(1,2))*Pi).eval() == numeric(-1))) errorflag = true; } if (errorflag) { clog << "sin((n+1/2)*Pi) with integer n does not always return exact {+|-}1" << endl; ++result; } return result; } /* Simple tests on the cosine trigonometric function. */ static unsigned inifcns_consist_cos(void) { unsigned result = 0; bool errorflag; // cos((n+1/2)*Pi) == 0? errorflag = false; for (int n=-10; n<=10; ++n) { if ( cos((n+numeric(1,2))*Pi).eval() != numeric(0) || !cos((n+numeric(1,2))*Pi).eval().info(info_flags::integer)) errorflag = true; } if (errorflag) { clog << "cos((n+1/2)*Pi) with integer n does not always return exact 0" << endl; ++result; } // cos(n*Pi) == 0? errorflag = false; for (int n=-10; n<=10; ++n) { if (! cos(n*Pi).eval().info(info_flags::integer) || !(cos(n*Pi).eval() == numeric(1) || cos(n*Pi).eval() == numeric(-1))) errorflag = true; } if (errorflag) { clog << "cos(n*Pi) with integer n does not always return exact {+|-}1" << endl; ++result; } return result; } /* Assorted tests on other transcendental functions. */ static unsigned inifcns_consist_trans(void) { unsigned result = 0; symbol x("x"); ex chk; chk = asin(1)-acos(0); if (!chk.is_zero()) { clog << "asin(1)-acos(0) erroneously returned " << chk << " instead of 0" << endl; ++result; } // arbitrary check of type sin(f(x)): chk = pow(sin(acos(x)),2) + pow(sin(asin(x)),2) - (1+pow(x,2))*pow(sin(atan(x)),2); if (chk != 1-pow(x,2)) { clog << "sin(acos(x))^2 + sin(asin(x))^2 - (1+x^2)*sin(atan(x))^2 " << "erroneously returned " << chk << " instead of 1-x^2" << endl; ++result; } // arbitrary check of type cos(f(x)): chk = pow(cos(acos(x)),2) + pow(cos(asin(x)),2) - (1+pow(x,2))*pow(cos(atan(x)),2); if (!chk.is_zero()) { clog << "cos(acos(x))^2 + cos(asin(x))^2 - (1+x^2)*cos(atan(x))^2 " << "erroneously returned " << chk << " instead of 0" << endl; ++result; } // arbitrary check of type tan(f(x)): chk = tan(acos(x))*tan(asin(x)) - tan(atan(x)); if (chk != 1-x) { clog << "tan(acos(x))*tan(asin(x)) - tan(atan(x)) " << "erroneously returned " << chk << " instead of -x+1" << endl; ++result; } // arbitrary check of type sinh(f(x)): chk = -pow(sinh(acosh(x)),2).expand()*pow(sinh(atanh(x)),2) - pow(sinh(asinh(x)),2); if (!chk.is_zero()) { clog << "expand(-(sinh(acosh(x)))^2)*(sinh(atanh(x))^2) - sinh(asinh(x))^2 " << "erroneously returned " << chk << " instead of 0" << endl; ++result; } // arbitrary check of type cosh(f(x)): chk = (pow(cosh(asinh(x)),2) - 2*pow(cosh(acosh(x)),2)) * pow(cosh(atanh(x)),2); if (chk != 1) { clog << "(cosh(asinh(x))^2 - 2*cosh(acosh(x))^2) * cosh(atanh(x))^2 " << "erroneously returned " << chk << " instead of 1" << endl; ++result; } // arbitrary check of type tanh(f(x)): chk = (pow(tanh(asinh(x)),-2) - pow(tanh(acosh(x)),2)).expand() * pow(tanh(atanh(x)),2); if (chk != 2) { clog << "expand(tanh(acosh(x))^2 - tanh(asinh(x))^(-2)) * tanh(atanh(x))^2 " << "erroneously returned " << chk << " instead of 2" << endl; ++result; } return result; } /* Simple tests on the Gamma combinatorial function. We stuff in arguments * where the result exists in closed form and check if it's ok. */ static unsigned inifcns_consist_gamma(void) { unsigned result = 0; ex e; e = gamma(ex(1)); for (int i=2; i<8; ++i) e += gamma(ex(i)); if (e != numeric(874)) { clog << "gamma(1)+...+gamma(7) erroneously returned " << e << " instead of 874" << endl; ++result; } e = gamma(ex(1)); for (int i=2; i<8; ++i) e *= gamma(ex(i)); if (e != numeric(24883200)) { clog << "gamma(1)*...*gamma(7) erroneously returned " << e << " instead of 24883200" << endl; ++result; } e = gamma(ex(numeric(5, 2)))*gamma(ex(numeric(9, 2)))*64; if (e != 315*Pi) { clog << "64*gamma(5/2)*gamma(9/2) erroneously returned " << e << " instead of 315*Pi" << endl; ++result; } e = gamma(ex(numeric(-13, 2))); for (int i=-13; i<7; i=i+2) e += gamma(ex(numeric(i, 2))); e = (e*gamma(ex(numeric(15, 2)))*numeric(512)); if (e != numeric(633935)*Pi) { clog << "512*(gamma(-13/2)+...+gamma(5/2))*gamma(15/2) erroneously returned " << e << " instead of 633935*Pi" << endl; ++result; } return result; } /* Simple tests on the Riemann Zeta function. We stuff in arguments where the * result exists in closed form and check if it's ok. Of course, this checks * the Bernoulli numbers as a side effect. */ static unsigned inifcns_consist_zeta(void) { unsigned result = 0; ex e; for (int i=0; i<13; i+=2) e += zeta(i)/pow(Pi,i); if (e!=numeric(-204992279,638512875)) { clog << "zeta(0) + zeta(2) + ... + zeta(12) erroneously returned " << e << " instead of -204992279/638512875" << endl; ++result; } e = 0; for (int i=-1; i>-16; i--) e += zeta(i); if (e!=numeric(487871,1633632)) { clog << "zeta(-1) + zeta(-2) + ... + zeta(-15) erroneously returned " << e << " instead of 487871/1633632" << endl; ++result; } return result; } unsigned inifcns_consist(void) { unsigned result = 0; cout << "checking consistency of symbolic functions..." << flush; clog << "---------consistency of symbolic functions:" << endl; result += inifcns_consist_sin(); result += inifcns_consist_cos(); result += inifcns_consist_trans(); result += inifcns_consist_gamma(); result += inifcns_consist_zeta(); if ( !result ) { cout << " passed "; clog << "(no output)" << endl; } else { cout << " failed "; } return result; }