/** @file exam_matrices.cpp * * Here we examine manipulations on GiNaC's symbolic matrices. */ /* * GiNaC Copyright (C) 1999-2021 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "ginac.h" using namespace GiNaC; #include #include using namespace std; static unsigned matrix_determinants() { unsigned result = 0; ex det; matrix m1(1,1), m2(2,2), m3(3,3), m4(4,4); symbol a("a"), b("b"), c("c"); symbol d("d"), e("e"), f("f"); symbol g("g"), h("h"), i("i"); // check symbolic trivial matrix determinant m1 = matrix{{a}}; det = m1.determinant(); if (det != a) { clog << "determinant of 1x1 matrix " << m1 << " erroneously returned " << det << endl; ++result; } // check generic dense symbolic 2x2 matrix determinant m2 = matrix{{a, b}, {c, d}}; det = m2.determinant(); if (det != (a*d-b*c)) { clog << "determinant of 2x2 matrix " << m2 << " erroneously returned " << det << endl; ++result; } // check generic dense symbolic 3x3 matrix determinant m3 = matrix{{a, b, c}, {d, e, f}, {g, h, i}}; det = m3.determinant(); if (det != (a*e*i - a*f*h - d*b*i + d*c*h + g*b*f - g*c*e)) { clog << "determinant of 3x3 matrix " << m3 << " erroneously returned " << det << endl; ++result; } // check dense numeric 3x3 matrix determinant m3 = matrix{{0, -1, 3}, {3, -2, 2}, {3, 4, -2}}; det = m3.determinant(); if (det != 42) { clog << "determinant of 3x3 matrix " << m3 << " erroneously returned " << det << endl; ++result; } // check dense symbolic 2x2 matrix determinant m2 = matrix{{a/(a-b), 1}, {b/(a-b), 1}}; det = m2.determinant(); if (det != 1) { if (det.normal() == 1) // only half wrong clog << "determinant of 2x2 matrix " << m2 << " was returned unnormalized as " << det << endl; else // totally wrong clog << "determinant of 2x2 matrix " << m2 << " erroneously returned " << det << endl; ++result; } // check sparse symbolic 4x4 matrix determinant m4.set(0,1,a).set(1,0,b).set(3,2,c).set(2,3,d); det = m4.determinant(); if (det != a*b*c*d) { clog << "determinant of 4x4 matrix " << m4 << " erroneously returned " << det << endl; ++result; } // check characteristic polynomial m3 = matrix{{a, -2, 2}, {3, a-1, 2}, {3, 4, a-3}}; ex p = m3.charpoly(a); if (p != 0) { clog << "charpoly of 3x3 matrix " << m3 << " erroneously returned " << p << endl; ++result; } return result; } static unsigned matrix_invert1() { unsigned result = 0; matrix m(1,1); symbol a("a"); m.set(0,0,a); matrix m_i = m.inverse(); if (m_i(0,0) != pow(a,-1)) { clog << "inversion of 1x1 matrix " << m << " erroneously returned " << m_i << endl; ++result; } return result; } static unsigned matrix_invert2() { unsigned result = 0; symbol a("a"), b("b"), c("c"), d("d"); matrix m = {{a, b}, {c, d}}; matrix m_i = m.inverse(); ex det = m.determinant(); if ((normal(m_i(0,0)*det) != d) || (normal(m_i(0,1)*det) != -b) || (normal(m_i(1,0)*det) != -c) || (normal(m_i(1,1)*det) != a)) { clog << "inversion of 2x2 matrix " << m << " erroneously returned " << m_i << endl; ++result; } return result; } static unsigned matrix_invert3() { unsigned result = 0; symbol a("a"), b("b"), c("c"); symbol d("d"), e("e"), f("f"); symbol g("g"), h("h"), i("i"); matrix m = {{a, b, c}, {d, e, f}, {g, h, i}}; matrix m_i = m.inverse(); ex det = m.determinant(); if ((normal(m_i(0,0)*det) != (e*i-f*h)) || (normal(m_i(0,1)*det) != (c*h-b*i)) || (normal(m_i(0,2)*det) != (b*f-c*e)) || (normal(m_i(1,0)*det) != (f*g-d*i)) || (normal(m_i(1,1)*det) != (a*i-c*g)) || (normal(m_i(1,2)*det) != (c*d-a*f)) || (normal(m_i(2,0)*det) != (d*h-e*g)) || (normal(m_i(2,1)*det) != (b*g-a*h)) || (normal(m_i(2,2)*det) != (a*e-b*d))) { clog << "inversion of 3x3 matrix " << m << " erroneously returned " << m_i << endl; ++result; } return result; } static unsigned matrix_solve2() { // check the solution of the multiple system A*X = B: // [ 1 2 -1 ] [ x0 y0 ] [ 4 0 ] // [ 1 4 -2 ]*[ x1 y1 ] = [ 7 0 ] // [ a -2 2 ] [ x2 y2 ] [ a 4 ] unsigned result = 0; symbol a("a"); symbol x0("x0"), x1("x1"), x2("x2"); symbol y0("y0"), y1("y1"), y2("y2"); matrix A = {{1, 2, -1}, {1, 4, -2}, {a, -2, 2}}; matrix B = {{4, 0}, {7, 0}, {a, 4}}; matrix X = {{x0 ,y0}, {x1, y1}, {x2, y2}}; matrix cmp = {{1, 0}, {3, 2}, {3, 4}}; matrix sol(A.solve(X, B)); if (cmp != sol) { clog << "Solving " << A << " * " << X << " == " << B << endl << "erroneously returned " << sol << endl; result = 1; } return result; } static unsigned matrix_solve3() { unsigned result = 0; symbol x("x"); symbol t1("t1"), t2("t2"), t3("t3"); matrix A = { {3+6*x, 6*(x+x*x)/(2+3*x), 0}, {-(2+7*x+6*x*x)/x, -2-2*x, 0}, {-2*(2+3*x)/(1+2*x), -6*x/(1+2*x), 1+4*x} }; matrix B = {{0}, {0}, {0}}; matrix X = {{t1}, {t2}, {t3}}; for (auto algo : vector({ solve_algo::gauss, solve_algo::divfree, solve_algo::bareiss, solve_algo::markowitz })) { matrix sol(A.solve(X, B, algo)); if (!normal((A*sol - B).evalm()).is_zero_matrix()) { clog << "Solving " << A << " * " << X << " == " << B << " with algo=" << algo << endl << "erroneously returned " << sol << endl; result += 1; } } return result; } static unsigned matrix_evalm() { unsigned result = 0; matrix S {{1, 2}, {3, 4}}; matrix T {{1, 1}, {2, -1}}; matrix R {{27, 14}, {36, 26}}; ex e = ((S + T) * (S + 2*T)); ex f = e.evalm(); if (!f.is_equal(R)) { clog << "Evaluating " << e << " erroneously returned " << f << " instead of " << R << endl; result++; } return result; } static unsigned matrix_rank() { unsigned result = 0; symbol x("x"), y("y"); matrix m(3,3); // the zero matrix always has rank 0 if (m.rank() != 0) { clog << "The rank of " << m << " was not computed correctly." << endl; ++result; } // a trivial rank one example m = {{1, 0, 0}, {2, 0, 0}, {3, 0, 0}}; if (m.rank() != 1) { clog << "The rank of " << m << " was not computed correctly." << endl; ++result; } // an example from Maple's help with rank two m = {{x, 1, 0}, {0, 0, 1}, {x*y, y, 1}}; if (m.rank() != 2) { clog << "The rank of " << m << " was not computed correctly." << endl; ++result; } // the 3x3 unit matrix has rank 3 m = ex_to(unit_matrix(3,3)); if (m.rank() != 3) { clog << "The rank of " << m << " was not computed correctly." << endl; ++result; } return result; } unsigned matrix_solve_nonnormal() { symbol a("a"), b("b"), c("c"), x("x"); // This matrix has a non-normal zero element! matrix mx {{1,0,0}, {0,1/(x+1)-(x-1)/(x*x-1),1}, {0,0,0}}; matrix zero {{0}, {0}, {0}}; matrix vars {{a}, {b}, {c}}; try { matrix sol_gauss = mx.solve(vars, zero, solve_algo::gauss); matrix sol_divfree = mx.solve(vars, zero, solve_algo::divfree); matrix sol_bareiss = mx.solve(vars, zero, solve_algo::bareiss); if (sol_gauss != sol_divfree || sol_gauss != sol_bareiss) { clog << "different solutions while solving " << mx << " * " << vars << " == " << zero << endl << "gauss: " << sol_gauss << endl << "divfree: " << sol_divfree << endl << "bareiss: " << sol_bareiss << endl; return 1; } } catch (const exception & e) { clog << "exception thrown while solving " << mx << " * " << vars << " == " << zero << endl; return 1; } return 0; } static unsigned matrix_misc() { unsigned result = 0; symbol a("a"), b("b"), c("c"), d("d"), e("e"), f("f"); matrix m1 = {{a, b}, {c, d}}; ex tr = trace(m1); // check a simple trace if (tr.compare(a+d)) { clog << "trace of 2x2 matrix " << m1 << " erroneously returned " << tr << endl; ++result; } // and two simple transpositions matrix m2 = transpose(m1); if (m2(0,0) != a || m2(0,1) != c || m2(1,0) != b || m2(1,1) != d) { clog << "transpose of 2x2 matrix " << m1 << " erroneously returned " << m2 << endl; ++result; } matrix m3 = {{a, b}, {c, d}, {e, f}}; if (transpose(transpose(m3)) != m3) { clog << "transposing 3x2 matrix " << m3 << " twice" << " erroneously returned " << transpose(transpose(m3)) << endl; ++result; } // produce a runtime-error by inverting a singular matrix and catch it matrix m4(2,2); matrix m5; bool caught = false; try { m5 = inverse(m4); } catch (std::runtime_error err) { caught = true; } if (!caught) { cerr << "singular 2x2 matrix " << m4 << " erroneously inverted to " << m5 << endl; ++result; } return result; } unsigned exam_matrices() { unsigned result = 0; cout << "examining symbolic matrix manipulations" << flush; result += matrix_determinants(); cout << '.' << flush; result += matrix_invert1(); cout << '.' << flush; result += matrix_invert2(); cout << '.' << flush; result += matrix_invert3(); cout << '.' << flush; result += matrix_solve2(); cout << '.' << flush; result += matrix_solve3(); cout << '.' << flush; result += matrix_evalm(); cout << "." << flush; result += matrix_rank(); cout << "." << flush; result += matrix_solve_nonnormal(); cout << "." << flush; result += matrix_misc(); cout << '.' << flush; return result; } int main(int argc, char** argv) { return exam_matrices(); }