/** @file exam_inifcns.cpp * * This test routine applies assorted tests on initially known higher level * functions. */ /* * GiNaC Copyright (C) 1999-2020 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "ginac.h" using namespace GiNaC; #include using namespace std; /* Assorted tests on other transcendental functions. */ static unsigned inifcns_consist_trans() { using GiNaC::asin; using GiNaC::acos; using GiNaC::asinh; using GiNaC::acosh; using GiNaC::atanh; unsigned result = 0; symbol x("x"); ex chk; chk = asin(1)-acos(0); if (!chk.is_zero()) { clog << "asin(1)-acos(0) erroneously returned " << chk << " instead of 0" << endl; ++result; } // arbitrary check of type sin(f(x)): chk = pow(sin(acos(x)),2) + pow(sin(asin(x)),2) - (1+pow(x,2))*pow(sin(atan(x)),2); if (chk != 1-pow(x,2)) { clog << "sin(acos(x))^2 + sin(asin(x))^2 - (1+x^2)*sin(atan(x))^2 " << "erroneously returned " << chk << " instead of 1-x^2" << endl; ++result; } // arbitrary check of type cos(f(x)): chk = pow(cos(acos(x)),2) + pow(cos(asin(x)),2) - (1+pow(x,2))*pow(cos(atan(x)),2); if (!chk.is_zero()) { clog << "cos(acos(x))^2 + cos(asin(x))^2 - (1+x^2)*cos(atan(x))^2 " << "erroneously returned " << chk << " instead of 0" << endl; ++result; } // arbitrary check of type tan(f(x)): chk = tan(acos(x))*tan(asin(x)) - tan(atan(x)); if (chk != 1-x) { clog << "tan(acos(x))*tan(asin(x)) - tan(atan(x)) " << "erroneously returned " << chk << " instead of -x+1" << endl; ++result; } // arbitrary check of type sinh(f(x)): chk = -pow(sinh(acosh(x)),2).expand()*pow(sinh(atanh(x)),2) - pow(sinh(asinh(x)),2); if (!chk.is_zero()) { clog << "expand(-(sinh(acosh(x)))^2)*(sinh(atanh(x))^2) - sinh(asinh(x))^2 " << "erroneously returned " << chk << " instead of 0" << endl; ++result; } // arbitrary check of type cosh(f(x)): chk = (pow(cosh(asinh(x)),2) - 2*pow(cosh(acosh(x)),2)) * pow(cosh(atanh(x)),2); if (chk != 1) { clog << "(cosh(asinh(x))^2 - 2*cosh(acosh(x))^2) * cosh(atanh(x))^2 " << "erroneously returned " << chk << " instead of 1" << endl; ++result; } // arbitrary check of type tanh(f(x)): chk = (pow(tanh(asinh(x)),-2) - pow(tanh(acosh(x)),2)).expand() * pow(tanh(atanh(x)),2); if (chk != 2) { clog << "expand(tanh(acosh(x))^2 - tanh(asinh(x))^(-2)) * tanh(atanh(x))^2 " << "erroneously returned " << chk << " instead of 2" << endl; ++result; } // check consistency of log and eta phases: for (int r1=-1; r1<=1; ++r1) { for (int i1=-1; i1<=1; ++i1) { ex x1 = r1+I*i1; if (x1.is_zero()) continue; for (int r2=-1; r2<=1; ++r2) { for (int i2=-1; i2<=1; ++i2) { ex x2 = r2+I*i2; if (x2.is_zero()) continue; if (abs(evalf(eta(x1,x2)-log(x1*x2)+log(x1)+log(x2)))>.1e-12) { clog << "either eta(x,y), log(x), log(y) or log(x*y) is wrong" << " at x==" << x1 << ", y==" << x2 << endl; ++result; } } } } } return result; } /* Simple tests on the tgamma function. We stuff in arguments where the results * exists in closed form and check if it's ok. */ static unsigned inifcns_consist_gamma() { using GiNaC::tgamma; unsigned result = 0; ex e; e = tgamma(1); for (int i=2; i<8; ++i) e += tgamma(ex(i)); if (e != numeric(874)) { clog << "tgamma(1)+...+tgamma(7) erroneously returned " << e << " instead of 874" << endl; ++result; } e = tgamma(1); for (int i=2; i<8; ++i) e *= tgamma(ex(i)); if (e != numeric(24883200)) { clog << "tgamma(1)*...*tgamma(7) erroneously returned " << e << " instead of 24883200" << endl; ++result; } e = tgamma(ex(numeric(5, 2)))*tgamma(ex(numeric(9, 2)))*64; if (e != 315*Pi) { clog << "64*tgamma(5/2)*tgamma(9/2) erroneously returned " << e << " instead of 315*Pi" << endl; ++result; } e = tgamma(ex(numeric(-13, 2))); for (int i=-13; i<7; i=i+2) e += tgamma(ex(numeric(i, 2))); e = (e*tgamma(ex(numeric(15, 2)))*numeric(512)); if (e != numeric(633935)*Pi) { clog << "512*(tgamma(-13/2)+...+tgamma(5/2))*tgamma(15/2) erroneously returned " << e << " instead of 633935*Pi" << endl; ++result; } return result; } /* Simple tests on the Psi-function (aka polygamma-function). We stuff in arguments where the result exists in closed form and check if it's ok. */ static unsigned inifcns_consist_psi() { using GiNaC::log; using GiNaC::tgamma; unsigned result = 0; symbol x; ex e, f; // We check psi(1) and psi(1/2) implicitly by calculating the curious // little identity tgamma(1)'/tgamma(1) - tgamma(1/2)'/tgamma(1/2) == 2*log(2). e += (tgamma(x).diff(x)/tgamma(x)).subs(x==numeric(1)); e -= (tgamma(x).diff(x)/tgamma(x)).subs(x==numeric(1,2)); if (e!=2*log(2)) { clog << "tgamma(1)'/tgamma(1) - tgamma(1/2)'/tgamma(1/2) erroneously returned " << e << " instead of 2*log(2)" << endl; ++result; } return result; } /* Simple tests on the Riemann Zeta function. We stuff in arguments where the * result exists in closed form and check if it's ok. Of course, this checks * the Bernoulli numbers as a side effect. */ static unsigned inifcns_consist_zeta() { unsigned result = 0; ex e; for (int i=0; i<13; i+=2) e += zeta(i)/pow(Pi,i); if (e!=numeric(-204992279,638512875)) { clog << "zeta(0) + zeta(2) + ... + zeta(12) erroneously returned " << e << " instead of -204992279/638512875" << endl; ++result; } e = 0; for (int i=-1; i>-16; i--) e += zeta(i); if (e!=numeric(487871,1633632)) { clog << "zeta(-1) + zeta(-2) + ... + zeta(-15) erroneously returned " << e << " instead of 487871/1633632" << endl; ++result; } return result; } static unsigned inifcns_consist_abs() { unsigned result = 0; realsymbol a("a"), b("b"), x("x"), y("y"); possymbol p("p"); symbol z("z"); if (!abs(exp(x+I*y)).eval().is_equal(exp(x))) ++result; if (!abs(pow(p,a+I*b)).eval().is_equal(pow(p,a))) ++result; if (!abs(sqrt(p)).eval().is_equal(sqrt(p))) ++result; if (!abs(-sqrt(p)).eval().is_equal(sqrt(p))) ++result; // also checks that abs(p)=p if (!abs(pow(p,a+I*b)).eval().is_equal(pow(p,a))) ++result; if (!abs(pow(x+I*y,a)).eval().is_equal(pow(abs(x+I*y),a))) ++result; // it is not necessary a simplification if the following is really evaluated if (!abs(pow(x+I*y,a+I*b)).eval().is_equal(abs(pow(x+I*y,a+I*b)))) ++result; // check expansion of abs if (!abs(-7*z*a*p).expand(expand_options::expand_transcendental).is_equal(7*abs(z)*abs(a)*p)) ++result; if (!abs(z.conjugate()).eval().is_equal(abs(z))) ++result; if (!abs(step(z)).eval().is_equal(step(z))) ++result; if (!abs(p).info(info_flags::positive) || !abs(a).info(info_flags::real)) ++result; if (abs(a).info(info_flags::positive) || !abs(a).info(info_flags::real)) ++result; if (abs(z).info(info_flags::positive) || !abs(z).info(info_flags::real)) ++result; return result; } static unsigned inifcns_consist_exp() { unsigned result = 0; symbol a("a"), b("b"); if (!exp(a+b).expand(expand_options::expand_transcendental).is_equal(exp(a)*exp(b))) ++result; // shall not be expanded since the arg is not add if (!exp(pow(a+b,2)).expand(expand_options::expand_transcendental).is_equal(exp(pow(a+b,2)))) ++result; // expand now if (!exp(pow(a+b,2)).expand(expand_options::expand_function_args | expand_options::expand_transcendental) .is_equal(exp(a*a)*exp(b*b)*exp(2*a*b))) ++result; return result; } static unsigned inifcns_consist_log() { using GiNaC::log; unsigned result = 0; symbol z("a"), w("b"); realsymbol a("a"), b("b"); possymbol p("p"), q("q"); // do not expand if (!log(z*w).expand(expand_options::expand_transcendental).is_equal(log(z*w))) ++result; // do not expand if (!log(a*b).expand(expand_options::expand_transcendental).is_equal(log(a*b))) ++result; // shall expand if (!log(p*q).expand(expand_options::expand_transcendental).is_equal(log(p) + log(q))) ++result; // a bit more complicated ex e1 = log(-7*p*pow(q,3)*a*pow(b,2)*z*w).expand(expand_options::expand_transcendental); ex e2 = log(7)+log(p)+log(pow(q,3))+log(-z*a*w*pow(b,2)); if (!e1.is_equal(e2)) ++result; // shall not do for non-real powers if (ex(log(pow(p,z))).is_equal(z*log(p))) ++result; // shall not do for non-positive basis if (ex(log(pow(a,b))).is_equal(b*log(a))) ++result; // infinite recursion log_series ex e(log(-p)); ex ser = ex_to(e.series(z, 1)) .convert_to_poly(/* no_order = */ true); if (!ser.is_equal(e)) { clog << "series(" << e << ", " << z << "): wrong result" << endl; ++result; } return result; } static unsigned inifcns_consist_various() { unsigned result = 0; symbol n; if ( binomial(n, 0) != 1 ) { clog << "ERROR: binomial(n,0) != 1" << endl; ++result; } return result; } /* Several tests for derivatives */ static unsigned inifcns_consist_derivatives() { unsigned result = 0; symbol z, w; realsymbol x; ex e, e1; e=pow(x,z).conjugate().diff(x); e1=pow(x,z).conjugate()*z.conjugate()/x; if (! (e-e1).normal().is_zero() ) { clog << "ERROR: pow(x,z).conjugate().diff(x) " << e << " != " << e1 << endl; ++result; } e=pow(w,z).conjugate().diff(w); e1=pow(w,z).conjugate()*z.conjugate()/w; if ( (e-e1).normal().is_zero() ) { clog << "ERROR: pow(w,z).conjugate().diff(w) " << e << " = " << e1 << endl; ++result; } e=atanh(x).imag_part().diff(x); if (! e.is_zero() ) { clog << "ERROR: atanh(x).imag_part().diff(x) " << e << " != 0" << endl; ++result; } e=atanh(w).imag_part().diff(w); if ( e.is_zero() ) { clog << "ERROR: atanh(w).imag_part().diff(w) " << e << " = 0" << endl; ++result; } e=atanh(x).real_part().diff(x); e1=pow(1-x*x,-1); if (! (e-e1).normal().is_zero() ) { clog << "ERROR: atanh(x).real_part().diff(x) " << e << " != " << e1 << endl; ++result; } e=atanh(w).real_part().diff(w); e1=pow(1-w*w,-1); if ( (e-e1).normal().is_zero() ) { clog << "ERROR: atanh(w).real_part().diff(w) " << e << " = " << e1 << endl; ++result; } e=abs(log(z)).diff(z); e1=(conjugate(log(z))/z+log(z)/conjugate(z))/abs(log(z))/2; if (! (e-e1).normal().is_zero() ) { clog << "ERROR: abs(log(z)).diff(z) " << e << " != " << e1 << endl; ++result; } e=Order(pow(x,4)).diff(x); e1=Order(pow(x,3)); if (! (e-e1).normal().is_zero() ) { clog << "ERROR: Order(pow(x,4)).diff(x) " << e << " != " << e1 << endl; ++result; } return result; } unsigned exam_inifcns() { unsigned result = 0; cout << "examining consistency of symbolic functions" << flush; result += inifcns_consist_trans(); cout << '.' << flush; result += inifcns_consist_gamma(); cout << '.' << flush; result += inifcns_consist_psi(); cout << '.' << flush; result += inifcns_consist_zeta(); cout << '.' << flush; result += inifcns_consist_abs(); cout << '.' << flush; result += inifcns_consist_exp(); cout << '.' << flush; result += inifcns_consist_log(); cout << '.' << flush; result += inifcns_consist_various(); cout << '.' << flush; result += inifcns_consist_derivatives(); cout << '.' << flush; return result; } int main(int argc, char** argv) { return exam_inifcns(); }