/** @file exam_indexed.cpp * * Here we test manipulations on GiNaC's indexed objects. */ /* * GiNaC Copyright (C) 1999-2020 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "ginac.h" using namespace GiNaC; #include using namespace std; static unsigned check_equal(const ex &e1, const ex &e2) { ex e = e1 - e2; if (!e.is_zero()) { clog << e1 << "-" << e2 << " erroneously returned " << e << " instead of 0" << endl; return 1; } return 0; } static unsigned check_equal_simplify(const ex &e1, const ex &e2) { ex e = simplify_indexed(e1) - e2; if (!e.is_zero()) { clog << "simplify_indexed(" << e1 << ")-" << e2 << " erroneously returned " << e << " instead of 0" << endl; return 1; } return 0; } static unsigned check_equal_simplify(const ex &e1, const ex &e2, const scalar_products &sp) { ex e = simplify_indexed(e1, sp) - e2; if (!e.is_zero()) { clog << "simplify_indexed(" << e1 << ")-" << e2 << " erroneously returned " << e << " instead of 0" << endl; return 1; } return 0; } static unsigned delta_check() { // checks identities of the delta tensor unsigned result = 0; symbol s_i("i"), s_j("j"), s_k("k"); idx i(s_i, 3), j(s_j, 3), k(s_k, 3); symbol A("A"); // symmetry result += check_equal(delta_tensor(i, j), delta_tensor(j, i)); // trace = dimension of index space result += check_equal(delta_tensor(i, i), 3); result += check_equal_simplify(delta_tensor(i, j) * delta_tensor(i, j), 3); // contraction with delta tensor result += check_equal_simplify(delta_tensor(i, j) * indexed(A, k), delta_tensor(i, j) * indexed(A, k)); result += check_equal_simplify(delta_tensor(i, j) * indexed(A, j), indexed(A, i)); result += check_equal_simplify(delta_tensor(i, j) * indexed(A, i), indexed(A, j)); result += check_equal_simplify(delta_tensor(i, j) * delta_tensor(j, k) * indexed(A, i), indexed(A, k)); return result; } static unsigned metric_check() { // checks identities of the metric tensor unsigned result = 0; symbol s_mu("mu"), s_nu("nu"), s_rho("rho"), s_sigma("sigma"); varidx mu(s_mu, 4), nu(s_nu, 4), rho(s_rho, 4), sigma(s_sigma, 4); symbol A("A"); // becomes delta tensor if indices have opposite variance result += check_equal(metric_tensor(mu, nu.toggle_variance()), delta_tensor(mu, nu.toggle_variance())); // scalar contraction = dimension of index space result += check_equal(metric_tensor(mu, mu.toggle_variance()), 4); result += check_equal_simplify(metric_tensor(mu, nu) * metric_tensor(mu.toggle_variance(), nu.toggle_variance()), 4); // contraction with metric tensor result += check_equal_simplify(metric_tensor(mu, nu) * indexed(A, nu), metric_tensor(mu, nu) * indexed(A, nu)); result += check_equal_simplify(metric_tensor(mu, nu) * indexed(A, nu.toggle_variance()), indexed(A, mu)); result += check_equal_simplify(metric_tensor(mu, nu) * indexed(A, mu.toggle_variance()), indexed(A, nu)); result += check_equal_simplify(metric_tensor(mu, nu) * metric_tensor(mu.toggle_variance(), rho.toggle_variance()) * indexed(A, nu.toggle_variance()), indexed(A, rho.toggle_variance())); result += check_equal_simplify(metric_tensor(mu, rho) * metric_tensor(nu, sigma) * indexed(A, rho.toggle_variance(), sigma.toggle_variance()), indexed(A, mu, nu)); result += check_equal_simplify(indexed(A, mu.toggle_variance()) * metric_tensor(mu, nu) - indexed(A, mu.toggle_variance()) * metric_tensor(nu, mu), 0); result += check_equal_simplify(indexed(A, mu.toggle_variance(), nu.toggle_variance()) * metric_tensor(nu, rho), indexed(A, mu.toggle_variance(), rho)); // contraction with delta tensor yields a metric tensor result += check_equal_simplify(delta_tensor(mu, nu.toggle_variance()) * metric_tensor(nu, rho), metric_tensor(mu, rho)); result += check_equal_simplify(metric_tensor(mu, nu) * indexed(A, nu.toggle_variance()) * delta_tensor(mu.toggle_variance(), rho), indexed(A, rho)); return result; } static unsigned epsilon_check() { // checks identities of the epsilon tensor unsigned result = 0; symbol s_mu("mu"), s_nu("nu"), s_rho("rho"), s_sigma("sigma"), s_tau("tau"); symbol d("d"); varidx mu(s_mu, 4), nu(s_nu, 4), rho(s_rho, 4), sigma(s_sigma, 4), tau(s_tau, 4); varidx mu_co(s_mu, 4, true), nu_co(s_nu, 4, true), rho_co(s_rho, 4, true), sigma_co(s_sigma, 4, true), tau_co(s_tau, 4, true); // antisymmetry result += check_equal(lorentz_eps(mu, nu, rho, sigma) + lorentz_eps(sigma, rho, mu, nu), 0); // convolution is zero result += check_equal(lorentz_eps(mu, nu, rho, nu_co), 0); result += check_equal(lorentz_eps(mu, nu, mu_co, nu_co), 0); result += check_equal_simplify(lorentz_g(mu_co, nu_co) * lorentz_eps(mu, nu, rho, sigma), 0); // contraction with symmetric tensor is zero result += check_equal_simplify(lorentz_eps(mu, nu, rho, sigma) * indexed(d, sy_symm(), mu_co, nu_co), 0); result += check_equal_simplify(lorentz_eps(mu, nu, rho, sigma) * indexed(d, sy_symm(), nu_co, sigma_co, rho_co), 0); result += check_equal_simplify(lorentz_eps(mu, nu, rho, sigma) * indexed(d, mu_co) * indexed(d, nu_co), 0); result += check_equal_simplify(lorentz_eps(mu_co, nu, rho, sigma) * indexed(d, mu) * indexed(d, nu_co), 0); ex e = lorentz_eps(mu, nu, rho, sigma) * indexed(d, mu_co) - lorentz_eps(mu_co, nu, rho, sigma) * indexed(d, mu); result += check_equal_simplify(e, 0); // contractions of epsilon tensors result += check_equal_simplify(lorentz_eps(mu, nu, rho, sigma) * lorentz_eps(mu_co, nu_co, rho_co, sigma_co), -24); result += check_equal_simplify(lorentz_eps(tau, nu, rho, sigma) * lorentz_eps(mu_co, nu_co, rho_co, sigma_co), -6 * delta_tensor(tau, mu_co)); return result; } DECLARE_FUNCTION_2P(symm_fcn) REGISTER_FUNCTION(symm_fcn, set_symmetry(sy_symm(0, 1))); DECLARE_FUNCTION_2P(anti_fcn) REGISTER_FUNCTION(anti_fcn, set_symmetry(sy_anti(0, 1))); static unsigned symmetry_check() { // check symmetric/antisymmetric objects unsigned result = 0; idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3), l(symbol("l"), 3); symbol A("A"), B("B"), C("C"); ex e; result += check_equal(indexed(A, sy_symm(), i, j), indexed(A, sy_symm(), j, i)); result += check_equal(indexed(A, sy_anti(), i, j) + indexed(A, sy_anti(), j, i), 0); result += check_equal(indexed(A, sy_anti(), i, j, k) - indexed(A, sy_anti(), j, k, i), 0); e = indexed(A, sy_symm(), i, j, k) * indexed(B, sy_anti(), l, k, i); result += check_equal_simplify(e, 0); e = indexed(A, sy_symm(), i, i, j, j) * indexed(B, sy_anti(), k, l); // GiNaC 0.8.0 had a bug here result += check_equal_simplify(e, e); symmetry R = sy_symm(sy_anti(0, 1), sy_anti(2, 3)); e = indexed(A, R, i, j, k, l) + indexed(A, R, j, i, k, l); result += check_equal(e, 0); e = indexed(A, R, i, j, k, l) + indexed(A, R, i, j, l, k); result += check_equal(e, 0); e = indexed(A, R, i, j, k, l) - indexed(A, R, j, i, l, k); result += check_equal(e, 0); e = indexed(A, R, i, j, k, l) + indexed(A, R, k, l, j, i); result += check_equal(e, 0); e = indexed(A, i, j); result += check_equal(symmetrize(e) + antisymmetrize(e), e); e = indexed(A, sy_symm(), i, j, k, l); result += check_equal(symmetrize(e), e); result += check_equal(antisymmetrize(e), 0); e = indexed(A, sy_anti(), i, j, k, l); result += check_equal(symmetrize(e), 0); result += check_equal(antisymmetrize(e), e); e = (indexed(A, sy_anti(), i, j, k, l) * (indexed(B, j) * indexed(C, k) + indexed(B, k) * indexed(C, j)) + indexed(B, i, l)).expand(); result += check_equal_simplify(e, indexed(B, i, l)); result += check_equal(symm_fcn(0, 1) + symm_fcn(1, 0), 2*symm_fcn(0, 1)); result += check_equal(anti_fcn(0, 1) + anti_fcn(1, 0), 0); result += check_equal(anti_fcn(0, 0), 0); return result; } static unsigned scalar_product_check() { // check scalar product replacement unsigned result = 0; idx i(symbol("i"), 3), j(symbol("j"), 3); symbol A("A"), B("B"), C("C"); ex e; scalar_products sp; sp.add(A, B, 0); // A and B are orthogonal sp.add(A, C, 0); // A and C are orthogonal sp.add(A, A, 4); // A^2 = 4 (A has length 2) e = (indexed(A + B, i) * indexed(A + C, i)).expand(expand_options::expand_indexed); result += check_equal_simplify(e, indexed(B, i) * indexed(C, i) + 4, sp); e = indexed(A, i, i) * indexed(B, j, j); // GiNaC 0.8.0 had a bug here result += check_equal_simplify(e, e, sp); return result; } static unsigned edyn_check() { // Relativistic electrodynamics // Test 1: check transformation laws of electric and magnetic fields by // applying a Lorentz boost to the field tensor unsigned result = 0; symbol beta("beta"); ex gamma = 1 / sqrt(1 - pow(beta, 2)); symbol Ex("Ex"), Ey("Ey"), Ez("Ez"); symbol Bx("Bx"), By("By"), Bz("Bz"); // Lorentz transformation matrix (boost along x axis) matrix L = {{ gamma, -beta*gamma, 0, 0}, {-beta*gamma, gamma, 0, 0}, { 0, 0, 1, 0}, { 0, 0, 0, 1}}; // Electromagnetic field tensor matrix F = {{ 0, -Ex, -Ey, -Ez}, {Ex, 0, -Bz, By}, {Ey, Bz, 0, -Bx}, {Ez, -By, Bx, 0}}; // Indices symbol s_mu("mu"), s_nu("nu"), s_rho("rho"), s_sigma("sigma"); varidx mu(s_mu, 4), nu(s_nu, 4), rho(s_rho, 4), sigma(s_sigma, 4); // Apply transformation law of second rank tensor ex e = (indexed(L, mu, rho.toggle_variance()) * indexed(L, nu, sigma.toggle_variance()) * indexed(F, rho, sigma)).simplify_indexed(); // Extract transformed electric and magnetic fields ex Ex_p = e.subs(lst{mu == 1, nu == 0}).normal(); ex Ey_p = e.subs(lst{mu == 2, nu == 0}).normal(); ex Ez_p = e.subs(lst{mu == 3, nu == 0}).normal(); ex Bx_p = e.subs(lst{mu == 3, nu == 2}).normal(); ex By_p = e.subs(lst{mu == 1, nu == 3}).normal(); ex Bz_p = e.subs(lst{mu == 2, nu == 1}).normal(); // Check results result += check_equal(Ex_p, Ex); result += check_equal(Ey_p, gamma * (Ey - beta * Bz)); result += check_equal(Ez_p, gamma * (Ez + beta * By)); result += check_equal(Bx_p, Bx); result += check_equal(By_p, gamma * (By + beta * Ez)); result += check_equal(Bz_p, gamma * (Bz - beta * Ey)); // Test 2: check energy density and Poynting vector of electromagnetic field // Minkowski metric ex eta = diag_matrix(lst{1, -1, -1, -1}); // Covariant field tensor ex F_mu_nu = (indexed(eta, mu.toggle_variance(), rho.toggle_variance()) * indexed(eta, nu.toggle_variance(), sigma.toggle_variance()) * indexed(F, rho, sigma)).simplify_indexed(); // Energy-momentum tensor ex T = (-indexed(eta, rho, sigma) * F_mu_nu.subs(s_nu == s_rho) * F_mu_nu.subs(lst{s_mu == s_nu, s_nu == s_sigma}) + indexed(eta, mu.toggle_variance(), nu.toggle_variance()) * F_mu_nu.subs(lst{s_mu == s_rho, s_nu == s_sigma}) * indexed(F, rho, sigma) / 4).simplify_indexed() / (4 * Pi); // Extract energy density and Poynting vector ex E = T.subs(lst{s_mu == 0, s_nu == 0}).normal(); ex Px = T.subs(lst{s_mu == 0, s_nu == 1}); ex Py = T.subs(lst{s_mu == 0, s_nu == 2}); ex Pz = T.subs(lst{s_mu == 0, s_nu == 3}); // Check results result += check_equal(E, (Ex*Ex+Ey*Ey+Ez*Ez+Bx*Bx+By*By+Bz*Bz) / (8 * Pi)); result += check_equal(Px, (Ez*By-Ey*Bz) / (4 * Pi)); result += check_equal(Py, (Ex*Bz-Ez*Bx) / (4 * Pi)); result += check_equal(Pz, (Ey*Bx-Ex*By) / (4 * Pi)); return result; } static unsigned spinor_check() { // check identities of the spinor metric unsigned result = 0; symbol psi("psi"); spinidx A(symbol("A")), B(symbol("B")), C(symbol("C")), D(symbol("D")); ex A_co = A.toggle_variance(), B_co = B.toggle_variance(); ex e; e = spinor_metric(A_co, B_co) * spinor_metric(A, B); result += check_equal_simplify(e, 2); e = spinor_metric(A_co, B_co) * spinor_metric(B, A); result += check_equal_simplify(e, -2); e = spinor_metric(A_co, B_co) * spinor_metric(A, C); result += check_equal_simplify(e, delta_tensor(B_co, C)); e = spinor_metric(A_co, B_co) * spinor_metric(B, C); result += check_equal_simplify(e, -delta_tensor(A_co, C)); e = spinor_metric(A_co, B_co) * spinor_metric(C, A); result += check_equal_simplify(e, -delta_tensor(B_co, C)); e = spinor_metric(A, B) * indexed(psi, B_co); result += check_equal_simplify(e, indexed(psi, A)); e = spinor_metric(A, B) * indexed(psi, A_co); result += check_equal_simplify(e, -indexed(psi, B)); e = spinor_metric(A_co, B_co) * indexed(psi, B); result += check_equal_simplify(e, -indexed(psi, A_co)); e = spinor_metric(A_co, B_co) * indexed(psi, A); result += check_equal_simplify(e, indexed(psi, B_co)); e = spinor_metric(D, A) * spinor_metric(A_co, B_co) * spinor_metric(B, C) - spinor_metric(D, A_co) * spinor_metric(A, B_co) * spinor_metric(B, C); result += check_equal_simplify(e, 0); return result; } static unsigned dummy_check() { // check dummy index renaming/repositioning unsigned result = 0; symbol p("p"), q("q"); idx i(symbol("i"), 3), j(symbol("j"), 3), n(symbol("n"), 3); varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4); ex e; e = indexed(p, i) * indexed(q, i) - indexed(p, j) * indexed(q, j); result += check_equal_simplify(e, 0); e = indexed(p, i) * indexed(p, i) * indexed(q, j) * indexed(q, j) - indexed(p, n) * indexed(p, n) * indexed(q, j) * indexed(q, j); result += check_equal_simplify(e, 0); e = indexed(p, mu, mu.toggle_variance()) - indexed(p, nu, nu.toggle_variance()); result += check_equal_simplify(e, 0); e = indexed(p, mu.toggle_variance(), nu, mu) * indexed(q, i) - indexed(p, mu, nu, mu.toggle_variance()) * indexed(q, i); result += check_equal_simplify(e, 0); e = indexed(p, mu, mu.toggle_variance()) - indexed(p, nu.toggle_variance(), nu); result += check_equal_simplify(e, 0); e = indexed(p, mu.toggle_variance(), mu) - indexed(p, nu, nu.toggle_variance()); result += check_equal_simplify(e, 0); // GiNaC 1.2.1 had a bug here because p.i*p.i -> (p.i)^2 e = indexed(p, i) * indexed(p, i) * indexed(p, j) + indexed(p, j); ex fi = exprseq(e.get_free_indices()); if (!fi.is_equal(exprseq{j})) { clog << "get_free_indices(" << e << ") erroneously returned " << fi << " instead of (.j)" << endl; ++result; } return result; } unsigned exam_indexed() { unsigned result = 0; cout << "examining indexed objects" << flush; result += delta_check(); cout << '.' << flush; result += metric_check(); cout << '.' << flush; result += epsilon_check(); cout << '.' << flush; result += symmetry_check(); cout << '.' << flush; result += scalar_product_check(); cout << '.' << flush; result += edyn_check(); cout << '.' << flush; result += spinor_check(); cout << '.' << flush; result += dummy_check(); cout << '.' << flush; return result; } int main(int argc, char** argv) { return exam_indexed(); }