/** @file exam_archive.cpp * * Here we test GiNaC's archiving system. */ /* * GiNaC Copyright (C) 1999-2020 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "ginac.h" using namespace GiNaC; #include #include using namespace std; #include unsigned exam_archive() { unsigned result = 0; symbol x("x"), y("y"), mu("mu"), dim("dim", "\\Delta"); ex e, f; // This expression is complete nonsense but it contains every type of // GiNaC object e = -42 * x * pow(y, sin(y*Catalan)) * dirac_ONE() * epsilon_tensor(idx(fail(), 3), idx(0, 3), idx(y/2, 3)) + lorentz_g( varidx(lst{x, -11*y, acos(2*x).series(x==3-5*I, 3)} * color_ONE() * metric_tensor(varidx(log(cos(128.0/(x*y))), 5), varidx(2, 5)), zeta(3)), varidx(diag_matrix({-1, Euler, atan(x/y==-15*I/17)}) * delta_tensor(idx(x, 2), idx(wild(7), 3)), zeta(3), true), true ) + dirac_gamma(varidx(mu, dim)) * dirac_gamma(varidx(mu, 4-dim, true)) * color_T(idx(x, 8), 1) * color_h(idx(x, 8), idx(y, 8), idx(2, 8)) * indexed(x, sy_anti(), idx(2*y+1, x), varidx(-mu, 5)) - 2.4275 * spinor_metric(spinidx(0, 2, false, true), spinidx(y)) + abs(x).series(x == y, 4); archive ar; ar.archive_ex(e, "expr 1"); { std::ofstream fout("exam.gar", std::ios_base::binary); fout << ar; } ar.clear(); { std::ifstream fin("exam.gar", std::ios_base::binary); fin >> ar; } f = ar.unarchive_ex(lst{x, y, mu, dim}, "expr 1"); ex difference = (f - e).expand(); if (!difference.is_zero()) { clog << "archiving/unarchiving " << e << endl << "erroneously returned " << f << endl; ++result; } return result; } /** numeric::archive used to fail if the real part of a complex number * is a rational number and the imaginary part is a floating point one. */ unsigned numeric_complex_bug() { using namespace cln; struct archive_unarchive_check { unsigned operator()(const cl_N& n) const { ex e = numeric(n); archive ar; ar.archive_ex(e, "test"); ex check = ar.unarchive_ex(lst{}, "test"); if (!check.is_equal(e)) { clog << __FILE__ << ':' << __LINE__ << ": expected: " << e << ", got " << check << endl; return 1; } return 0; } } checker; unsigned result = 0; const cl_I one(1); const cl_R three_fp = cl_float(3.0); std::vector numbers = { complex(one, one), complex(one, three_fp), complex(three_fp, one), complex(three_fp, three_fp) }; for (auto & n : numbers) { result += checker(n); } return result; } int main(int argc, char** argv) { unsigned result = 0; cout << "examining archiving system" << flush; result += exam_archive(); cout << '.' << flush; result += numeric_complex_bug(); cout << '.' << flush; return result; }