]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
the destructor, copy constructor, and assignment operator (which were the
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <stdexcept>
25
26 #include "pseries.h"
27 #include "add.h"
28 #include "inifcns.h"
29 #include "lst.h"
30 #include "mul.h"
31 #include "power.h"
32 #include "relational.h"
33 #include "symbol.h"
34 #include "archive.h"
35 #include "utils.h"
36 #include "debugmsg.h"
37
38 #ifndef NO_NAMESPACE_GINAC
39 namespace GiNaC {
40 #endif // ndef NO_NAMESPACE_GINAC
41
42 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
43
44 /*
45  *  Default constructor, destructor, copy constructor, assignment operator and helpers
46  */
47
48 pseries::pseries() : basic(TINFO_pseries)
49 {
50         debugmsg("pseries default constructor", LOGLEVEL_CONSTRUCT);
51 }
52
53 void pseries::copy(const pseries &other)
54 {
55         inherited::copy(other);
56         seq = other.seq;
57         var = other.var;
58         point = other.point;
59 }
60
61 void pseries::destroy(bool call_parent)
62 {
63         if (call_parent)
64                 inherited::destroy(call_parent);
65 }
66
67
68 /*
69  *  Other constructors
70  */
71
72 /** Construct pseries from a vector of coefficients and powers.
73  *  expair.rest holds the coefficient, expair.coeff holds the power.
74  *  The powers must be integers (positive or negative) and in ascending order;
75  *  the last coefficient can be Order(_ex1()) to represent a truncated,
76  *  non-terminating series.
77  *
78  *  @param rel_  expansion variable and point (must hold a relational)
79  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
80  *  @return newly constructed pseries */
81 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
82 {
83         debugmsg("pseries constructor from ex,epvector", LOGLEVEL_CONSTRUCT);
84         GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational));
85         GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol));
86         point = rel_.rhs();
87         var = *static_cast<symbol *>(rel_.lhs().bp);
88 }
89
90
91 /*
92  *  Archiving
93  */
94
95 /** Construct object from archive_node. */
96 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
97 {
98         debugmsg("pseries constructor from archive_node", LOGLEVEL_CONSTRUCT);
99         for (unsigned int i=0; true; ++i) {
100                 ex rest;
101                 ex coeff;
102                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
103                         seq.push_back(expair(rest, coeff));
104                 else
105                         break;
106         }
107         n.find_ex("var", var, sym_lst);
108         n.find_ex("point", point, sym_lst);
109 }
110
111 /** Unarchive the object. */
112 ex pseries::unarchive(const archive_node &n, const lst &sym_lst)
113 {
114         return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated);
115 }
116
117 /** Archive the object. */
118 void pseries::archive(archive_node &n) const
119 {
120         inherited::archive(n);
121         epvector::const_iterator i = seq.begin(), iend = seq.end();
122         while (i != iend) {
123                 n.add_ex("coeff", i->rest);
124                 n.add_ex("power", i->coeff);
125                 ++i;
126         }
127         n.add_ex("var", var);
128         n.add_ex("point", point);
129 }
130
131 //////////
132 // functions overriding virtual functions from bases classes
133 //////////
134
135 basic *pseries::duplicate() const
136 {
137         debugmsg("pseries duplicate", LOGLEVEL_DUPLICATE);
138         return new pseries(*this);
139 }
140
141 void pseries::print(std::ostream &os, unsigned upper_precedence) const
142 {
143         debugmsg("pseries print", LOGLEVEL_PRINT);
144         if (precedence<=upper_precedence) os << "(";
145         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
146                 // omit zero terms
147                 if (i->rest.is_zero())
148                         continue;
149                 // print a sign, if needed
150                 if (i!=seq.begin())
151                         os << '+';
152                 if (!is_order_function(i->rest)) {
153                         // print 'rest', i.e. the expansion coefficient
154                         if (i->rest.info(info_flags::numeric) &&
155                                 i->rest.info(info_flags::positive)) {
156                                 os << i->rest;
157                         } else
158                                 os << "(" << i->rest << ')';
159                         // print 'coeff', something like (x-1)^42
160                         if (!i->coeff.is_zero()) {
161                                 os << '*';
162                                 if (!point.is_zero())
163                                         os << '(' << var-point << ')';
164                                 else
165                                         os << var;
166                                 if (i->coeff.compare(_ex1())) {
167                                         os << '^';
168                                         if (i->coeff.info(info_flags::negative))
169                                                 os << '(' << i->coeff << ')';
170                                         else
171                                                 os << i->coeff;
172                                 }
173                         }
174                 } else {
175                         os << Order(power(var-point,i->coeff));
176                 }
177         }
178         if (precedence<=upper_precedence) os << ")";
179 }
180
181
182 void pseries::printraw(std::ostream &os) const
183 {
184         debugmsg("pseries printraw", LOGLEVEL_PRINT);
185         os << "pseries(" << var << ";" << point << ";";
186         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
187                 os << "(" << (*i).rest << "," << (*i).coeff << "),";
188         }
189         os << ")";
190 }
191
192
193 void pseries::printtree(std::ostream & os, unsigned indent) const
194 {
195         debugmsg("pseries printtree",LOGLEVEL_PRINT);
196         os << std::string(indent,' ') << "pseries " 
197            << ", hash=" << hashvalue
198            << " (0x" << std::hex << hashvalue << std::dec << ")"
199            << ", flags=" << flags << std::endl;
200         for (unsigned i=0; i<seq.size(); ++i) {
201                 seq[i].rest.printtree(os,indent+delta_indent);
202                 seq[i].coeff.printtree(os,indent+delta_indent);
203                 if (i!=seq.size()-1)
204                         os << std::string(indent+delta_indent,' ') << "-----" << std::endl;
205         }
206         var.printtree(os, indent+delta_indent);
207         point.printtree(os, indent+delta_indent);
208 }
209
210 /** Return the number of operands including a possible order term. */
211 unsigned pseries::nops(void) const
212 {
213         return seq.size();
214 }
215
216
217 /** Return the ith term in the series when represented as a sum. */
218 ex pseries::op(int i) const
219 {
220         if (i < 0 || unsigned(i) >= seq.size())
221                 throw (std::out_of_range("op() out of range"));
222         return seq[i].rest * power(var - point, seq[i].coeff);
223 }
224
225
226 ex &pseries::let_op(int i)
227 {
228         throw (std::logic_error("let_op not defined for pseries"));
229 }
230
231
232 /** Return degree of highest power of the series.  This is usually the exponent
233  *  of the Order term.  If s is not the expansion variable of the series, the
234  *  series is examined termwise. */
235 int pseries::degree(const symbol &s) const
236 {
237         if (var.is_equal(s)) {
238                 // Return last exponent
239                 if (seq.size())
240                         return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
241                 else
242                         return 0;
243         } else {
244                 epvector::const_iterator it = seq.begin(), itend = seq.end();
245                 if (it == itend)
246                         return 0;
247                 int max_pow = INT_MIN;
248                 while (it != itend) {
249                         int pow = it->rest.degree(s);
250                         if (pow > max_pow)
251                                 max_pow = pow;
252                         ++it;
253                 }
254                 return max_pow;
255         }
256 }
257
258 /** Return degree of lowest power of the series.  This is usually the exponent
259  *  of the leading term.  If s is not the expansion variable of the series, the
260  *  series is examined termwise.  If s is the expansion variable but the
261  *  expansion point is not zero the series is not expanded to find the degree.
262  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
263 int pseries::ldegree(const symbol &s) const
264 {
265         if (var.is_equal(s)) {
266                 // Return first exponent
267                 if (seq.size())
268                         return ex_to_numeric((*(seq.begin())).coeff).to_int();
269                 else
270                         return 0;
271         } else {
272                 epvector::const_iterator it = seq.begin(), itend = seq.end();
273                 if (it == itend)
274                         return 0;
275                 int min_pow = INT_MAX;
276                 while (it != itend) {
277                         int pow = it->rest.ldegree(s);
278                         if (pow < min_pow)
279                                 min_pow = pow;
280                         ++it;
281                 }
282                 return min_pow;
283         }
284 }
285
286 ex pseries::coeff(const symbol &s, int n) const
287 {
288         if (var.is_equal(s)) {
289                 if (seq.size() == 0)
290                         return _ex0();
291                 
292                 // Binary search in sequence for given power
293                 numeric looking_for = numeric(n);
294                 int lo = 0, hi = seq.size() - 1;
295                 while (lo <= hi) {
296                         int mid = (lo + hi) / 2;
297                         GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric));
298                         int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for);
299                         switch (cmp) {
300                                 case -1:
301                                         lo = mid + 1;
302                                         break;
303                                 case 0:
304                                         return seq[mid].rest;
305                                 case 1:
306                                         hi = mid - 1;
307                                         break;
308                                 default:
309                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
310                         }
311                 }
312                 return _ex0();
313         } else
314                 return convert_to_poly().coeff(s, n);
315 }
316
317
318 ex pseries::collect(const symbol &s) const
319 {
320         return *this;
321 }
322
323
324 /** Evaluate coefficients. */
325 ex pseries::eval(int level) const
326 {
327         if (level == 1)
328                 return this->hold();
329         
330         if (level == -max_recursion_level)
331                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
332         
333         // Construct a new series with evaluated coefficients
334         epvector new_seq;
335         new_seq.reserve(seq.size());
336         epvector::const_iterator it = seq.begin(), itend = seq.end();
337         while (it != itend) {
338                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
339                 ++it;
340         }
341         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
342 }
343
344
345 /** Evaluate coefficients numerically. */
346 ex pseries::evalf(int level) const
347 {
348         if (level == 1)
349                 return *this;
350         
351         if (level == -max_recursion_level)
352                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
353         
354         // Construct a new series with evaluated coefficients
355         epvector new_seq;
356         new_seq.reserve(seq.size());
357         epvector::const_iterator it = seq.begin(), itend = seq.end();
358         while (it != itend) {
359                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
360                 ++it;
361         }
362         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
363 }
364
365
366 ex pseries::subs(const lst & ls, const lst & lr) const
367 {
368         // If expansion variable is being substituted, convert the series to a
369         // polynomial and do the substitution there because the result might
370         // no longer be a power series
371         if (ls.has(var))
372                 return convert_to_poly(true).subs(ls, lr);
373         
374         // Otherwise construct a new series with substituted coefficients and
375         // expansion point
376         epvector newseq;
377         newseq.reserve(seq.size());
378         epvector::const_iterator it = seq.begin(), itend = seq.end();
379         while (it != itend) {
380                 newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
381                 ++it;
382         }
383         return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated);
384 }
385
386
387 /** Implementation of ex::expand() for a power series.  It expands all the
388  *  terms individually and returns the resulting series as a new pseries.
389  *  @see ex::diff */
390 ex pseries::expand(unsigned options) const
391 {
392         epvector newseq;
393         newseq.reserve(seq.size());
394         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i)
395                 newseq.push_back(expair(i->rest.expand(), i->coeff));
396         return (new pseries(relational(var,point), newseq))
397                 ->setflag(status_flags::dynallocated | status_flags::expanded);
398 }
399
400
401 /** Implementation of ex::diff() for a power series.  It treats the series as a
402  *  polynomial.
403  *  @see ex::diff */
404 ex pseries::derivative(const symbol & s) const
405 {
406         if (s == var) {
407                 epvector new_seq;
408                 epvector::const_iterator it = seq.begin(), itend = seq.end();
409                 
410                 // FIXME: coeff might depend on var
411                 while (it != itend) {
412                         if (is_order_function(it->rest)) {
413                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
414                         } else {
415                                 ex c = it->rest * it->coeff;
416                                 if (!c.is_zero())
417                                         new_seq.push_back(expair(c, it->coeff - 1));
418                         }
419                         ++it;
420                 }
421                 return pseries(relational(var,point), new_seq);
422         } else {
423                 return *this;
424         }
425 }
426
427
428 /*
429  *  Construct ordinary polynomial out of series
430  */
431
432 /** Convert a pseries object to an ordinary polynomial.
433  *
434  *  @param no_order flag: discard higher order terms */
435 ex pseries::convert_to_poly(bool no_order) const
436 {
437         ex e;
438         epvector::const_iterator it = seq.begin(), itend = seq.end();
439         
440         while (it != itend) {
441                 if (is_order_function(it->rest)) {
442                         if (!no_order)
443                                 e += Order(power(var - point, it->coeff));
444                 } else
445                         e += it->rest * power(var - point, it->coeff);
446                 ++it;
447         }
448         return e;
449 }
450
451 /** Returns true if there is no order term, i.e. the series terminates and
452  *  false otherwise. */
453 bool pseries::is_terminating(void) const
454 {
455         return seq.size() == 0 || !is_order_function((seq.end()-1)->rest);
456 }
457
458
459 /*
460  *  Implementation of series expansion
461  */
462
463 /** Default implementation of ex::series(). This performs Taylor expansion.
464  *  @see ex::series */
465 ex basic::series(const relational & r, int order, unsigned options) const
466 {
467         epvector seq;
468         numeric fac(1);
469         ex deriv = *this;
470         ex coeff = deriv.subs(r);
471         const symbol *s = static_cast<symbol *>(r.lhs().bp);
472         
473         if (!coeff.is_zero())
474                 seq.push_back(expair(coeff, numeric(0)));
475         
476         int n;
477         for (n=1; n<order; ++n) {
478                 fac = fac.mul(numeric(n));
479                 deriv = deriv.diff(*s).expand();
480                 if (deriv.is_zero()) {
481                         // Series terminates
482                         return pseries(r, seq);
483                 }
484                 coeff = deriv.subs(r);
485                 if (!coeff.is_zero())
486                         seq.push_back(expair(fac.inverse() * coeff, numeric(n)));
487         }
488         
489         // Higher-order terms, if present
490         deriv = deriv.diff(*s);
491         if (!deriv.expand().is_zero())
492                 seq.push_back(expair(Order(_ex1()), numeric(n)));
493         return pseries(r, seq);
494 }
495
496
497 /** Implementation of ex::series() for symbols.
498  *  @see ex::series */
499 ex symbol::series(const relational & r, int order, unsigned options) const
500 {
501         epvector seq;
502         const ex point = r.rhs();
503         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
504         const symbol *s = static_cast<symbol *>(r.lhs().bp);
505         
506         if (this->is_equal(*s)) {
507                 if (order > 0 && !point.is_zero())
508                         seq.push_back(expair(point, _ex0()));
509                 if (order > 1)
510                         seq.push_back(expair(_ex1(), _ex1()));
511                 else
512                         seq.push_back(expair(Order(_ex1()), numeric(order)));
513         } else
514                 seq.push_back(expair(*this, _ex0()));
515         return pseries(r, seq);
516 }
517
518
519 /** Add one series object to another, producing a pseries object that
520  *  represents the sum.
521  *
522  *  @param other  pseries object to add with
523  *  @return the sum as a pseries */
524 ex pseries::add_series(const pseries &other) const
525 {
526         // Adding two series with different variables or expansion points
527         // results in an empty (constant) series 
528         if (!is_compatible_to(other)) {
529                 epvector nul;
530                 nul.push_back(expair(Order(_ex1()), _ex0()));
531                 return pseries(relational(var,point), nul);
532         }
533         
534         // Series addition
535         epvector new_seq;
536         epvector::const_iterator a = seq.begin();
537         epvector::const_iterator b = other.seq.begin();
538         epvector::const_iterator a_end = seq.end();
539         epvector::const_iterator b_end = other.seq.end();
540         int pow_a = INT_MAX, pow_b = INT_MAX;
541         for (;;) {
542                 // If a is empty, fill up with elements from b and stop
543                 if (a == a_end) {
544                         while (b != b_end) {
545                                 new_seq.push_back(*b);
546                                 ++b;
547                         }
548                         break;
549                 } else
550                         pow_a = ex_to_numeric((*a).coeff).to_int();
551                 
552                 // If b is empty, fill up with elements from a and stop
553                 if (b == b_end) {
554                         while (a != a_end) {
555                                 new_seq.push_back(*a);
556                                 ++a;
557                         }
558                         break;
559                 } else
560                         pow_b = ex_to_numeric((*b).coeff).to_int();
561                 
562                 // a and b are non-empty, compare powers
563                 if (pow_a < pow_b) {
564                         // a has lesser power, get coefficient from a
565                         new_seq.push_back(*a);
566                         if (is_order_function((*a).rest))
567                                 break;
568                         ++a;
569                 } else if (pow_b < pow_a) {
570                         // b has lesser power, get coefficient from b
571                         new_seq.push_back(*b);
572                         if (is_order_function((*b).rest))
573                                 break;
574                         ++b;
575                 } else {
576                         // Add coefficient of a and b
577                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
578                                 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
579                                 break;  // Order term ends the sequence
580                         } else {
581                                 ex sum = (*a).rest + (*b).rest;
582                                 if (!(sum.is_zero()))
583                                         new_seq.push_back(expair(sum, numeric(pow_a)));
584                                 ++a;
585                                 ++b;
586                         }
587                 }
588         }
589         return pseries(relational(var,point), new_seq);
590 }
591
592
593 /** Implementation of ex::series() for sums. This performs series addition when
594  *  adding pseries objects.
595  *  @see ex::series */
596 ex add::series(const relational & r, int order, unsigned options) const
597 {
598         ex acc; // Series accumulator
599         
600         // Get first term from overall_coeff
601         acc = overall_coeff.series(r, order, options);
602         
603         // Add remaining terms
604         epvector::const_iterator it = seq.begin();
605         epvector::const_iterator itend = seq.end();
606         for (; it!=itend; ++it) {
607                 ex op;
608                 if (is_ex_exactly_of_type(it->rest, pseries))
609                         op = it->rest;
610                 else
611                         op = it->rest.series(r, order, options);
612                 if (!it->coeff.is_equal(_ex1()))
613                         op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
614                 
615                 // Series addition
616                 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
617         }
618         return acc;
619 }
620
621
622 /** Multiply a pseries object with a numeric constant, producing a pseries
623  *  object that represents the product.
624  *
625  *  @param other  constant to multiply with
626  *  @return the product as a pseries */
627 ex pseries::mul_const(const numeric &other) const
628 {
629         epvector new_seq;
630         new_seq.reserve(seq.size());
631         
632         epvector::const_iterator it = seq.begin(), itend = seq.end();
633         while (it != itend) {
634                 if (!is_order_function(it->rest))
635                         new_seq.push_back(expair(it->rest * other, it->coeff));
636                 else
637                         new_seq.push_back(*it);
638                 ++it;
639         }
640         return pseries(relational(var,point), new_seq);
641 }
642
643
644 /** Multiply one pseries object to another, producing a pseries object that
645  *  represents the product.
646  *
647  *  @param other  pseries object to multiply with
648  *  @return the product as a pseries */
649 ex pseries::mul_series(const pseries &other) const
650 {
651         // Multiplying two series with different variables or expansion points
652         // results in an empty (constant) series 
653         if (!is_compatible_to(other)) {
654                 epvector nul;
655                 nul.push_back(expair(Order(_ex1()), _ex0()));
656                 return pseries(relational(var,point), nul);
657         }
658         
659         // Series multiplication
660         epvector new_seq;
661         
662         const symbol *s = static_cast<symbol *>(var.bp);
663         int a_max = degree(*s);
664         int b_max = other.degree(*s);
665         int a_min = ldegree(*s);
666         int b_min = other.ldegree(*s);
667         int cdeg_min = a_min + b_min;
668         int cdeg_max = a_max + b_max;
669         
670         int higher_order_a = INT_MAX;
671         int higher_order_b = INT_MAX;
672         if (is_order_function(coeff(*s, a_max)))
673                 higher_order_a = a_max + b_min;
674         if (is_order_function(other.coeff(*s, b_max)))
675                 higher_order_b = b_max + a_min;
676         int higher_order_c = std::min(higher_order_a, higher_order_b);
677         if (cdeg_max >= higher_order_c)
678                 cdeg_max = higher_order_c - 1;
679         
680         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
681                 ex co = _ex0();
682                 // c(i)=a(0)b(i)+...+a(i)b(0)
683                 for (int i=a_min; cdeg-i>=b_min; ++i) {
684                         ex a_coeff = coeff(*s, i);
685                         ex b_coeff = other.coeff(*s, cdeg-i);
686                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
687                                 co += a_coeff * b_coeff;
688                 }
689                 if (!co.is_zero())
690                         new_seq.push_back(expair(co, numeric(cdeg)));
691         }
692         if (higher_order_c < INT_MAX)
693                 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
694         return pseries(relational(var,point), new_seq);
695 }
696
697
698 /** Implementation of ex::series() for product. This performs series
699  *  multiplication when multiplying series.
700  *  @see ex::series */
701 ex mul::series(const relational & r, int order, unsigned options) const
702 {
703         ex acc; // Series accumulator
704         
705         // Get first term from overall_coeff
706         acc = overall_coeff.series(r, order, options);
707         
708         // Multiply with remaining terms
709         epvector::const_iterator it = seq.begin();
710         epvector::const_iterator itend = seq.end();
711         for (; it!=itend; ++it) {
712                 ex op = it->rest;
713                 if (op.info(info_flags::numeric)) {
714                         // series * const (special case, faster)
715                         ex f = power(op, it->coeff);
716                         acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
717                         continue;
718                 } else if (!is_ex_exactly_of_type(op, pseries))
719                         op = op.series(r, order, options);
720                 if (!it->coeff.is_equal(_ex1()))
721                         op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
722
723                 // Series multiplication
724                 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
725         }
726         return acc;
727 }
728
729
730 /** Compute the p-th power of a series.
731  *
732  *  @param p  power to compute
733  *  @param deg  truncation order of series calculation */
734 ex pseries::power_const(const numeric &p, int deg) const
735 {
736         // method:
737         // let A(x) be this series and for the time being let it start with a
738         // constant (later we'll generalize):
739         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
740         // We want to compute
741         //     C(x) = A(x)^p
742         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
743         // Taking the derivative on both sides and multiplying with A(x) one
744         // immediately arrives at
745         //     C'(x)*A(x) = p*C(x)*A'(x)
746         // Multiplying this out and comparing coefficients we get the recurrence
747         // formula
748         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
749         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
750         // which can easily be solved given the starting value c_0 = (a_0)^p.
751         // For the more general case where the leading coefficient of A(x) is not
752         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
753         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
754         // then of course x^(p*m) but the recurrence formula still holds.
755         const symbol *s = static_cast<symbol *>(var.bp);
756         int ldeg = ldegree(*s);
757         
758         // Compute coefficients of the powered series
759         exvector co;
760         co.reserve(deg);
761         co.push_back(power(coeff(*s, ldeg), p));
762         bool all_sums_zero = true;
763         for (int i=1; i<deg; ++i) {
764                 ex sum = _ex0();
765                 for (int j=1; j<=i; ++j) {
766                         ex c = coeff(*s, j + ldeg);
767                         if (is_order_function(c)) {
768                                 co.push_back(Order(_ex1()));
769                                 break;
770                         } else
771                                 sum += (p * j - (i - j)) * co[i - j] * c;
772                 }
773                 if (!sum.is_zero())
774                         all_sums_zero = false;
775                 co.push_back(sum / coeff(*s, ldeg) / numeric(i));
776         }
777         
778         // Construct new series (of non-zero coefficients)
779         epvector new_seq;
780         bool higher_order = false;
781         for (int i=0; i<deg; ++i) {
782                 if (!co[i].is_zero())
783                         new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
784                 if (is_order_function(co[i])) {
785                         higher_order = true;
786                         break;
787                 }
788         }
789         if (!higher_order && !all_sums_zero)
790                 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
791         return pseries(relational(var,point), new_seq);
792 }
793
794
795 /** Return a new pseries object with the powers shifted by deg. */
796 pseries pseries::shift_exponents(int deg) const
797 {
798         epvector newseq(seq);
799         for (epvector::iterator i=newseq.begin(); i!=newseq.end(); ++i)
800                 i->coeff = i->coeff + deg;
801         return pseries(relational(var, point), newseq);
802 }
803
804
805 /** Implementation of ex::series() for powers. This performs Laurent expansion
806  *  of reciprocals of series at singularities.
807  *  @see ex::series */
808 ex power::series(const relational & r, int order, unsigned options) const
809 {
810         ex e;
811         if (!is_ex_exactly_of_type(basis, pseries)) {
812                 // Basis is not a series, may there be a singularity?
813                 bool must_expand_basis = false;
814                 try {
815                         basis.subs(r);
816                 } catch (pole_error) {
817                         must_expand_basis = true;
818                 }
819                 
820                 // Is the expression of type something^(-int)?
821                 if (!must_expand_basis && !exponent.info(info_flags::negint))
822                         return basic::series(r, order, options);
823                 
824                 // Is the expression of type 0^something?
825                 if (!must_expand_basis && !basis.subs(r).is_zero())
826                         return basic::series(r, order, options);
827                 
828                 // Singularity encountered, expand basis into series
829                 e = basis.series(r, order, options);
830         } else {
831                 // Basis is a series
832                 e = basis;
833         }
834         
835         // Power e
836         return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
837 }
838
839
840 /** Re-expansion of a pseries object. */
841 ex pseries::series(const relational & r, int order, unsigned options) const
842 {
843         const ex p = r.rhs();
844         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
845         const symbol *s = static_cast<symbol *>(r.lhs().bp);
846         
847         if (var.is_equal(*s) && point.is_equal(p)) {
848                 if (order > degree(*s))
849                         return *this;
850                 else {
851                         epvector new_seq;
852                         epvector::const_iterator it = seq.begin(), itend = seq.end();
853                         while (it != itend) {
854                                 int o = ex_to_numeric(it->coeff).to_int();
855                                 if (o >= order) {
856                                         new_seq.push_back(expair(Order(_ex1()), o));
857                                         break;
858                                 }
859                                 new_seq.push_back(*it);
860                                 ++it;
861                         }
862                         return pseries(r, new_seq);
863                 }
864         } else
865                 return convert_to_poly().series(r, order, options);
866 }
867
868
869 /** Compute the truncated series expansion of an expression.
870  *  This function returns an expression containing an object of class pseries 
871  *  to represent the series. If the series does not terminate within the given
872  *  truncation order, the last term of the series will be an order term.
873  *
874  *  @param r  expansion relation, lhs holds variable and rhs holds point
875  *  @param order  truncation order of series calculations
876  *  @param options  of class series_options
877  *  @return an expression holding a pseries object */
878 ex ex::series(const ex & r, int order, unsigned options) const
879 {
880         GINAC_ASSERT(bp!=0);
881         ex e;
882         relational rel_;
883         
884         if (is_ex_exactly_of_type(r,relational))
885                 rel_ = ex_to_relational(r);
886         else if (is_ex_exactly_of_type(r,symbol))
887                 rel_ = relational(r,_ex0());
888         else
889                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
890         
891         try {
892                 e = bp->series(rel_, order, options);
893         } catch (std::exception &x) {
894                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
895         }
896         return e;
897 }
898
899 //////////
900 // static member variables
901 //////////
902
903 // protected
904
905 unsigned pseries::precedence = 38;  // for clarity just below add::precedence
906
907 #ifndef NO_NAMESPACE_GINAC
908 } // namespace GiNaC
909 #endif // ndef NO_NAMESPACE_GINAC