]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
Improve method of setting status_flags::dynallocated.
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
22  */
23
24 #include "pseries.h"
25 #include "add.h"
26 #include "inifcns.h" // for Order function
27 #include "lst.h"
28 #include "mul.h"
29 #include "power.h"
30 #include "relational.h"
31 #include "operators.h"
32 #include "symbol.h"
33 #include "integral.h"
34 #include "archive.h"
35 #include "utils.h"
36
37 #include <limits>
38 #include <numeric>
39 #include <stdexcept>
40
41 namespace GiNaC {
42
43 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(pseries, basic,
44   print_func<print_context>(&pseries::do_print).
45   print_func<print_latex>(&pseries::do_print_latex).
46   print_func<print_tree>(&pseries::do_print_tree).
47   print_func<print_python>(&pseries::do_print_python).
48   print_func<print_python_repr>(&pseries::do_print_python_repr))
49
50
51 /*
52  *  Default constructor
53  */
54
55 pseries::pseries() { }
56
57
58 /*
59  *  Other ctors
60  */
61
62 /** Construct pseries from a vector of coefficients and powers.
63  *  expair.rest holds the coefficient, expair.coeff holds the power.
64  *  The powers must be integers (positive or negative) and in ascending order;
65  *  the last coefficient can be Order(_ex1) to represent a truncated,
66  *  non-terminating series.
67  *
68  *  @param rel_  expansion variable and point (must hold a relational)
69  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
70  *  @return newly constructed pseries */
71 pseries::pseries(const ex &rel_, const epvector &ops_)
72   : seq(ops_)
73 {
74         GINAC_ASSERT(is_a<relational>(rel_));
75         GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
76         point = rel_.rhs();
77         var = rel_.lhs();
78 }
79 pseries::pseries(const ex &rel_, epvector &&ops_)
80   : seq(std::move(ops_))
81 {
82         GINAC_ASSERT(is_a<relational>(rel_));
83         GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
84         point = rel_.rhs();
85         var = rel_.lhs();
86 }
87
88
89 /*
90  *  Archiving
91  */
92
93 void pseries::read_archive(const archive_node &n, lst &sym_lst) 
94 {
95         inherited::read_archive(n, sym_lst);
96         auto first = n.find_first("coeff");
97         auto last = n.find_last("power");
98         ++last;
99         seq.reserve((last-first)/2);
100
101         for (auto loc = first; loc < last;) {
102                 ex rest;
103                 ex coeff;
104                 n.find_ex_by_loc(loc++, rest, sym_lst);
105                 n.find_ex_by_loc(loc++, coeff, sym_lst);
106                 seq.push_back(expair(rest, coeff));
107         }
108
109         n.find_ex("var", var, sym_lst);
110         n.find_ex("point", point, sym_lst);
111 }
112
113 void pseries::archive(archive_node &n) const
114 {
115         inherited::archive(n);
116         for (auto & it : seq) {
117                 n.add_ex("coeff", it.rest);
118                 n.add_ex("power", it.coeff);
119         }
120         n.add_ex("var", var);
121         n.add_ex("point", point);
122 }
123
124
125 //////////
126 // functions overriding virtual functions from base classes
127 //////////
128
129 void pseries::print_series(const print_context & c, const char *openbrace, const char *closebrace, const char *mul_sym, const char *pow_sym, unsigned level) const
130 {
131         if (precedence() <= level)
132                 c.s << '(';
133                 
134         // objects of type pseries must not have any zero entries, so the
135         // trivial (zero) pseries needs a special treatment here:
136         if (seq.empty())
137                 c.s << '0';
138
139         auto i = seq.begin(), end = seq.end();
140         while (i != end) {
141
142                 // print a sign, if needed
143                 if (i != seq.begin())
144                         c.s << '+';
145
146                 if (!is_order_function(i->rest)) {
147
148                         // print 'rest', i.e. the expansion coefficient
149                         if (i->rest.info(info_flags::numeric) &&
150                                 i->rest.info(info_flags::positive)) {
151                                 i->rest.print(c);
152                         } else {
153                                 c.s << openbrace << '(';
154                                 i->rest.print(c);
155                                 c.s << ')' << closebrace;
156                         }
157
158                         // print 'coeff', something like (x-1)^42
159                         if (!i->coeff.is_zero()) {
160                                 c.s << mul_sym;
161                                 if (!point.is_zero()) {
162                                         c.s << openbrace << '(';
163                                         (var-point).print(c);
164                                         c.s << ')' << closebrace;
165                                 } else
166                                         var.print(c);
167                                 if (i->coeff.compare(_ex1)) {
168                                         c.s << pow_sym;
169                                         c.s << openbrace;
170                                         if (i->coeff.info(info_flags::negative)) {
171                                                 c.s << '(';
172                                                 i->coeff.print(c);
173                                                 c.s << ')';
174                                         } else
175                                                 i->coeff.print(c);
176                                         c.s << closebrace;
177                                 }
178                         }
179                 } else
180                         Order(power(var-point,i->coeff)).print(c);
181                 ++i;
182         }
183
184         if (precedence() <= level)
185                 c.s << ')';
186 }
187
188 void pseries::do_print(const print_context & c, unsigned level) const
189 {
190         print_series(c, "", "", "*", "^", level);
191 }
192
193 void pseries::do_print_latex(const print_latex & c, unsigned level) const
194 {
195         print_series(c, "{", "}", " ", "^", level);
196 }
197
198 void pseries::do_print_python(const print_python & c, unsigned level) const
199 {
200         print_series(c, "", "", "*", "**", level);
201 }
202
203 void pseries::do_print_tree(const print_tree & c, unsigned level) const
204 {
205         c.s << std::string(level, ' ') << class_name() << " @" << this
206             << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
207             << std::endl;
208         size_t num = seq.size();
209         for (size_t i=0; i<num; ++i) {
210                 seq[i].rest.print(c, level + c.delta_indent);
211                 seq[i].coeff.print(c, level + c.delta_indent);
212                 c.s << std::string(level + c.delta_indent, ' ') << "-----" << std::endl;
213         }
214         var.print(c, level + c.delta_indent);
215         point.print(c, level + c.delta_indent);
216 }
217
218 void pseries::do_print_python_repr(const print_python_repr & c, unsigned level) const
219 {
220         c.s << class_name() << "(relational(";
221         var.print(c);
222         c.s << ',';
223         point.print(c);
224         c.s << "),[";
225         size_t num = seq.size();
226         for (size_t i=0; i<num; ++i) {
227                 if (i)
228                         c.s << ',';
229                 c.s << '(';
230                 seq[i].rest.print(c);
231                 c.s << ',';
232                 seq[i].coeff.print(c);
233                 c.s << ')';
234         }
235         c.s << "])";
236 }
237
238 int pseries::compare_same_type(const basic & other) const
239 {
240         GINAC_ASSERT(is_a<pseries>(other));
241         const pseries &o = static_cast<const pseries &>(other);
242         
243         // first compare the lengths of the series...
244         if (seq.size()>o.seq.size())
245                 return 1;
246         if (seq.size()<o.seq.size())
247                 return -1;
248         
249         // ...then the expansion point...
250         int cmpval = var.compare(o.var);
251         if (cmpval)
252                 return cmpval;
253         cmpval = point.compare(o.point);
254         if (cmpval)
255                 return cmpval;
256         
257         // ...and if that failed the individual elements
258         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
259         while (it!=seq.end() && o_it!=o.seq.end()) {
260                 cmpval = it->compare(*o_it);
261                 if (cmpval)
262                         return cmpval;
263                 ++it;
264                 ++o_it;
265         }
266
267         // so they are equal.
268         return 0;
269 }
270
271 /** Return the number of operands including a possible order term. */
272 size_t pseries::nops() const
273 {
274         return seq.size();
275 }
276
277 /** Return the ith term in the series when represented as a sum. */
278 ex pseries::op(size_t i) const
279 {
280         if (i >= seq.size())
281                 throw (std::out_of_range("op() out of range"));
282
283         if (is_order_function(seq[i].rest))
284                 return Order(power(var-point, seq[i].coeff));
285         return seq[i].rest * power(var - point, seq[i].coeff);
286 }
287
288 /** Return degree of highest power of the series.  This is usually the exponent
289  *  of the Order term.  If s is not the expansion variable of the series, the
290  *  series is examined termwise. */
291 int pseries::degree(const ex &s) const
292 {
293         if (var.is_equal(s)) {
294                 // Return last exponent
295                 if (seq.size())
296                         return ex_to<numeric>((seq.end()-1)->coeff).to_int();
297                 else
298                         return 0;
299         } else {
300                 epvector::const_iterator it = seq.begin(), itend = seq.end();
301                 if (it == itend)
302                         return 0;
303                 int max_pow = std::numeric_limits<int>::min();
304                 while (it != itend) {
305                         int pow = it->rest.degree(s);
306                         if (pow > max_pow)
307                                 max_pow = pow;
308                         ++it;
309                 }
310                 return max_pow;
311         }
312 }
313
314 /** Return degree of lowest power of the series.  This is usually the exponent
315  *  of the leading term.  If s is not the expansion variable of the series, the
316  *  series is examined termwise.  If s is the expansion variable but the
317  *  expansion point is not zero the series is not expanded to find the degree.
318  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
319 int pseries::ldegree(const ex &s) const
320 {
321         if (var.is_equal(s)) {
322                 // Return first exponent
323                 if (seq.size())
324                         return ex_to<numeric>((seq.begin())->coeff).to_int();
325                 else
326                         return 0;
327         } else {
328                 epvector::const_iterator it = seq.begin(), itend = seq.end();
329                 if (it == itend)
330                         return 0;
331                 int min_pow = std::numeric_limits<int>::max();
332                 while (it != itend) {
333                         int pow = it->rest.ldegree(s);
334                         if (pow < min_pow)
335                                 min_pow = pow;
336                         ++it;
337                 }
338                 return min_pow;
339         }
340 }
341
342 /** Return coefficient of degree n in power series if s is the expansion
343  *  variable.  If the expansion point is nonzero, by definition the n=1
344  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
345  *  the expansion took place in the s in the first place).
346  *  If s is not the expansion variable, an attempt is made to convert the
347  *  series to a polynomial and return the corresponding coefficient from
348  *  there. */
349 ex pseries::coeff(const ex &s, int n) const
350 {
351         if (var.is_equal(s)) {
352                 if (seq.empty())
353                         return _ex0;
354                 
355                 // Binary search in sequence for given power
356                 numeric looking_for = numeric(n);
357                 int lo = 0, hi = seq.size() - 1;
358                 while (lo <= hi) {
359                         int mid = (lo + hi) / 2;
360                         GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
361                         int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
362                         switch (cmp) {
363                                 case -1:
364                                         lo = mid + 1;
365                                         break;
366                                 case 0:
367                                         return seq[mid].rest;
368                                 case 1:
369                                         hi = mid - 1;
370                                         break;
371                                 default:
372                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
373                         }
374                 }
375                 return _ex0;
376         } else
377                 return convert_to_poly().coeff(s, n);
378 }
379
380 /** Does nothing. */
381 ex pseries::collect(const ex &s, bool distributed) const
382 {
383         return *this;
384 }
385
386 /** Perform coefficient-wise automatic term rewriting rules in this class. */
387 ex pseries::eval(int level) const
388 {
389         if (level == 1)
390                 return this->hold();
391         
392         if (level == -max_recursion_level)
393                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
394         
395         // Construct a new series with evaluated coefficients
396         epvector new_seq;
397         new_seq.reserve(seq.size());
398         epvector::const_iterator it = seq.begin(), itend = seq.end();
399         while (it != itend) {
400                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
401                 ++it;
402         }
403         return dynallocate<pseries>(relational(var,point), std::move(new_seq)).setflag(status_flags::evaluated);
404 }
405
406 /** Evaluate coefficients numerically. */
407 ex pseries::evalf(int level) const
408 {
409         if (level == 1)
410                 return *this;
411         
412         if (level == -max_recursion_level)
413                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
414         
415         // Construct a new series with evaluated coefficients
416         epvector new_seq;
417         new_seq.reserve(seq.size());
418         epvector::const_iterator it = seq.begin(), itend = seq.end();
419         while (it != itend) {
420                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
421                 ++it;
422         }
423         return dynallocate<pseries>(relational(var,point), std::move(new_seq)).setflag(status_flags::evaluated);
424 }
425
426 ex pseries::conjugate() const
427 {
428         if(!var.info(info_flags::real))
429                 return conjugate_function(*this).hold();
430
431         std::unique_ptr<epvector> newseq(conjugateepvector(seq));
432         ex newpoint = point.conjugate();
433
434         if (!newseq && are_ex_trivially_equal(point, newpoint)) {
435                 return *this;
436         }
437
438         return dynallocate<pseries>(var==newpoint, newseq ? std::move(*newseq) : seq);
439 }
440
441 ex pseries::real_part() const
442 {
443         if(!var.info(info_flags::real))
444                 return real_part_function(*this).hold();
445         ex newpoint = point.real_part();
446         if(newpoint != point)
447                 return real_part_function(*this).hold();
448
449         epvector v;
450         v.reserve(seq.size());
451         for (auto & it : seq)
452                 v.push_back(expair((it.rest).real_part(), it.coeff));
453         return dynallocate<pseries>(var==point, std::move(v));
454 }
455
456 ex pseries::imag_part() const
457 {
458         if(!var.info(info_flags::real))
459                 return imag_part_function(*this).hold();
460         ex newpoint = point.real_part();
461         if(newpoint != point)
462                 return imag_part_function(*this).hold();
463
464         epvector v;
465         v.reserve(seq.size());
466         for (auto & it : seq)
467                 v.push_back(expair((it.rest).imag_part(), it.coeff));
468         return dynallocate<pseries>(var==point, std::move(v));
469 }
470
471 ex pseries::eval_integ() const
472 {
473         std::unique_ptr<epvector> newseq(nullptr);
474         for (auto i=seq.begin(); i!=seq.end(); ++i) {
475                 if (newseq) {
476                         newseq->push_back(expair(i->rest.eval_integ(), i->coeff));
477                         continue;
478                 }
479                 ex newterm = i->rest.eval_integ();
480                 if (!are_ex_trivially_equal(newterm, i->rest)) {
481                         newseq.reset(new epvector);
482                         newseq->reserve(seq.size());
483                         for (auto j=seq.begin(); j!=i; ++j)
484                                 newseq->push_back(*j);
485                         newseq->push_back(expair(newterm, i->coeff));
486                 }
487         }
488
489         ex newpoint = point.eval_integ();
490         if (newseq || !are_ex_trivially_equal(newpoint, point))
491                 return dynallocate<pseries>(var==newpoint, std::move(*newseq));
492         return *this;
493 }
494
495 ex pseries::evalm() const
496 {
497         // evalm each coefficient
498         epvector newseq;
499         bool something_changed = false;
500         for (auto i=seq.begin(); i!=seq.end(); ++i) {
501                 if (something_changed) {
502                         ex newcoeff = i->rest.evalm();
503                         if (!newcoeff.is_zero())
504                                 newseq.push_back(expair(newcoeff, i->coeff));
505                 }
506                 else {
507                         ex newcoeff = i->rest.evalm();
508                         if (!are_ex_trivially_equal(newcoeff, i->rest)) {
509                                 something_changed = true;
510                                 newseq.reserve(seq.size());
511                                 std::copy(seq.begin(), i, std::back_inserter<epvector>(newseq));
512                                 if (!newcoeff.is_zero())
513                                         newseq.push_back(expair(newcoeff, i->coeff));
514                         }
515                 }
516         }
517         if (something_changed)
518                 return dynallocate<pseries>(var==point, std::move(newseq));
519         else
520                 return *this;
521 }
522
523 ex pseries::subs(const exmap & m, unsigned options) const
524 {
525         // If expansion variable is being substituted, convert the series to a
526         // polynomial and do the substitution there because the result might
527         // no longer be a power series
528         if (m.find(var) != m.end())
529                 return convert_to_poly(true).subs(m, options);
530         
531         // Otherwise construct a new series with substituted coefficients and
532         // expansion point
533         epvector newseq;
534         newseq.reserve(seq.size());
535         for (auto & it : seq)
536                 newseq.push_back(expair(it.rest.subs(m, options), it.coeff));
537         return dynallocate<pseries>(relational(var,point.subs(m, options)), std::move(newseq));
538 }
539
540 /** Implementation of ex::expand() for a power series.  It expands all the
541  *  terms individually and returns the resulting series as a new pseries. */
542 ex pseries::expand(unsigned options) const
543 {
544         epvector newseq;
545         for (auto & it : seq) {
546                 ex restexp = it.rest.expand();
547                 if (!restexp.is_zero())
548                         newseq.push_back(expair(restexp, it.coeff));
549         }
550         return dynallocate<pseries>(relational(var,point), std::move(newseq)).setflag(options == 0 ? status_flags::expanded : 0);
551 }
552
553 /** Implementation of ex::diff() for a power series.
554  *  @see ex::diff */
555 ex pseries::derivative(const symbol & s) const
556 {
557         epvector new_seq;
558
559         if (s == var) {
560                 
561                 // FIXME: coeff might depend on var
562                 for (auto & it : seq) {
563                         if (is_order_function(it.rest)) {
564                                 new_seq.push_back(expair(it.rest, it.coeff - 1));
565                         } else {
566                                 ex c = it.rest * it.coeff;
567                                 if (!c.is_zero())
568                                         new_seq.push_back(expair(c, it.coeff - 1));
569                         }
570                 }
571
572         } else {
573
574                 for (auto & it : seq) {
575                         if (is_order_function(it.rest)) {
576                                 new_seq.push_back(it);
577                         } else {
578                                 ex c = it.rest.diff(s);
579                                 if (!c.is_zero())
580                                         new_seq.push_back(expair(c, it.coeff));
581                         }
582                 }
583         }
584
585         return pseries(relational(var,point), std::move(new_seq));
586 }
587
588 ex pseries::convert_to_poly(bool no_order) const
589 {
590         ex e;
591         for (auto & it : seq) {
592                 if (is_order_function(it.rest)) {
593                         if (!no_order)
594                                 e += Order(power(var - point, it.coeff));
595                 } else
596                         e += it.rest * power(var - point, it.coeff);
597         }
598         return e;
599 }
600
601 bool pseries::is_terminating() const
602 {
603         return seq.empty() || !is_order_function((seq.end()-1)->rest);
604 }
605
606 ex pseries::coeffop(size_t i) const
607 {
608         if (i >= nops())
609                 throw (std::out_of_range("coeffop() out of range"));
610         return seq[i].rest;
611 }
612
613 ex pseries::exponop(size_t i) const
614 {
615         if (i >= nops())
616                 throw (std::out_of_range("exponop() out of range"));
617         return seq[i].coeff;
618 }
619
620
621 /*
622  *  Implementations of series expansion
623  */
624
625 /** Default implementation of ex::series(). This performs Taylor expansion.
626  *  @see ex::series */
627 ex basic::series(const relational & r, int order, unsigned options) const
628 {
629         epvector seq;
630         const symbol &s = ex_to<symbol>(r.lhs());
631
632         // default for order-values that make no sense for Taylor expansion
633         if ((order <= 0) && this->has(s)) {
634                 seq.push_back(expair(Order(_ex1), order));
635                 return pseries(r, std::move(seq));
636         }
637
638         // do Taylor expansion
639         numeric fac = 1;
640         ex deriv = *this;
641         ex coeff = deriv.subs(r, subs_options::no_pattern);
642
643         if (!coeff.is_zero()) {
644                 seq.push_back(expair(coeff, _ex0));
645         }
646
647         int n;
648         for (n=1; n<order; ++n) {
649                 fac = fac.mul(n);
650                 // We need to test for zero in order to see if the series terminates.
651                 // The problem is that there is no such thing as a perfect test for
652                 // zero.  Expanding the term occasionally helps a little...
653                 deriv = deriv.diff(s).expand();
654                 if (deriv.is_zero())  // Series terminates
655                         return pseries(r, std::move(seq));
656
657                 coeff = deriv.subs(r, subs_options::no_pattern);
658                 if (!coeff.is_zero())
659                         seq.push_back(expair(fac.inverse() * coeff, n));
660         }
661         
662         // Higher-order terms, if present
663         deriv = deriv.diff(s);
664         if (!deriv.expand().is_zero())
665                 seq.push_back(expair(Order(_ex1), n));
666         return pseries(r, std::move(seq));
667 }
668
669
670 /** Implementation of ex::series() for symbols.
671  *  @see ex::series */
672 ex symbol::series(const relational & r, int order, unsigned options) const
673 {
674         epvector seq;
675         const ex point = r.rhs();
676         GINAC_ASSERT(is_a<symbol>(r.lhs()));
677
678         if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
679                 if (order > 0 && !point.is_zero())
680                         seq.push_back(expair(point, _ex0));
681                 if (order > 1)
682                         seq.push_back(expair(_ex1, _ex1));
683                 else
684                         seq.push_back(expair(Order(_ex1), numeric(order)));
685         } else
686                 seq.push_back(expair(*this, _ex0));
687         return pseries(r, std::move(seq));
688 }
689
690
691 /** Add one series object to another, producing a pseries object that
692  *  represents the sum.
693  *
694  *  @param other  pseries object to add with
695  *  @return the sum as a pseries */
696 ex pseries::add_series(const pseries &other) const
697 {
698         // Adding two series with different variables or expansion points
699         // results in an empty (constant) series 
700         if (!is_compatible_to(other)) {
701                 epvector nul { expair(Order(_ex1), _ex0) };
702                 return pseries(relational(var,point), std::move(nul));
703         }
704         
705         // Series addition
706         epvector new_seq;
707         auto a = seq.begin(), a_end = seq.end();
708         auto b = other.seq.begin(), b_end = other.seq.end();
709         int pow_a = std::numeric_limits<int>::max(), pow_b = std::numeric_limits<int>::max();
710         for (;;) {
711                 // If a is empty, fill up with elements from b and stop
712                 if (a == a_end) {
713                         while (b != b_end) {
714                                 new_seq.push_back(*b);
715                                 ++b;
716                         }
717                         break;
718                 } else
719                         pow_a = ex_to<numeric>((*a).coeff).to_int();
720                 
721                 // If b is empty, fill up with elements from a and stop
722                 if (b == b_end) {
723                         while (a != a_end) {
724                                 new_seq.push_back(*a);
725                                 ++a;
726                         }
727                         break;
728                 } else
729                         pow_b = ex_to<numeric>((*b).coeff).to_int();
730                 
731                 // a and b are non-empty, compare powers
732                 if (pow_a < pow_b) {
733                         // a has lesser power, get coefficient from a
734                         new_seq.push_back(*a);
735                         if (is_order_function((*a).rest))
736                                 break;
737                         ++a;
738                 } else if (pow_b < pow_a) {
739                         // b has lesser power, get coefficient from b
740                         new_seq.push_back(*b);
741                         if (is_order_function((*b).rest))
742                                 break;
743                         ++b;
744                 } else {
745                         // Add coefficient of a and b
746                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
747                                 new_seq.push_back(expair(Order(_ex1), (*a).coeff));
748                                 break;  // Order term ends the sequence
749                         } else {
750                                 ex sum = (*a).rest + (*b).rest;
751                                 if (!(sum.is_zero()))
752                                         new_seq.push_back(expair(sum, numeric(pow_a)));
753                                 ++a;
754                                 ++b;
755                         }
756                 }
757         }
758         return pseries(relational(var,point), std::move(new_seq));
759 }
760
761
762 /** Implementation of ex::series() for sums. This performs series addition when
763  *  adding pseries objects.
764  *  @see ex::series */
765 ex add::series(const relational & r, int order, unsigned options) const
766 {
767         ex acc; // Series accumulator
768         
769         // Get first term from overall_coeff
770         acc = overall_coeff.series(r, order, options);
771         
772         // Add remaining terms
773         for (auto & it : seq) {
774                 ex op;
775                 if (is_exactly_a<pseries>(it.rest))
776                         op = it.rest;
777                 else
778                         op = it.rest.series(r, order, options);
779                 if (!it.coeff.is_equal(_ex1))
780                         op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it.coeff));
781                 
782                 // Series addition
783                 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
784         }
785         return acc;
786 }
787
788
789 /** Multiply a pseries object with a numeric constant, producing a pseries
790  *  object that represents the product.
791  *
792  *  @param other  constant to multiply with
793  *  @return the product as a pseries */
794 ex pseries::mul_const(const numeric &other) const
795 {
796         epvector new_seq;
797         new_seq.reserve(seq.size());
798         
799         for (auto & it : seq) {
800                 if (!is_order_function(it.rest))
801                         new_seq.push_back(expair(it.rest * other, it.coeff));
802                 else
803                         new_seq.push_back(it);
804         }
805         return pseries(relational(var,point), std::move(new_seq));
806 }
807
808
809 /** Multiply one pseries object to another, producing a pseries object that
810  *  represents the product.
811  *
812  *  @param other  pseries object to multiply with
813  *  @return the product as a pseries */
814 ex pseries::mul_series(const pseries &other) const
815 {
816         // Multiplying two series with different variables or expansion points
817         // results in an empty (constant) series 
818         if (!is_compatible_to(other)) {
819                 epvector nul { expair(Order(_ex1), _ex0) };
820                 return pseries(relational(var,point), std::move(nul));
821         }
822
823         if (seq.empty() || other.seq.empty()) {
824                 return dynallocate<pseries>(var==point, epvector());
825         }
826         
827         // Series multiplication
828         epvector new_seq;
829         int a_max = degree(var);
830         int b_max = other.degree(var);
831         int a_min = ldegree(var);
832         int b_min = other.ldegree(var);
833         int cdeg_min = a_min + b_min;
834         int cdeg_max = a_max + b_max;
835         
836         int higher_order_a = std::numeric_limits<int>::max();
837         int higher_order_b = std::numeric_limits<int>::max();
838         if (is_order_function(coeff(var, a_max)))
839                 higher_order_a = a_max + b_min;
840         if (is_order_function(other.coeff(var, b_max)))
841                 higher_order_b = b_max + a_min;
842         int higher_order_c = std::min(higher_order_a, higher_order_b);
843         if (cdeg_max >= higher_order_c)
844                 cdeg_max = higher_order_c - 1;
845         
846         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
847                 ex co = _ex0;
848                 // c(i)=a(0)b(i)+...+a(i)b(0)
849                 for (int i=a_min; cdeg-i>=b_min; ++i) {
850                         ex a_coeff = coeff(var, i);
851                         ex b_coeff = other.coeff(var, cdeg-i);
852                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
853                                 co += a_coeff * b_coeff;
854                 }
855                 if (!co.is_zero())
856                         new_seq.push_back(expair(co, numeric(cdeg)));
857         }
858         if (higher_order_c < std::numeric_limits<int>::max())
859                 new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c)));
860         return pseries(relational(var, point), std::move(new_seq));
861 }
862
863
864 /** Implementation of ex::series() for product. This performs series
865  *  multiplication when multiplying series.
866  *  @see ex::series */
867 ex mul::series(const relational & r, int order, unsigned options) const
868 {
869         pseries acc; // Series accumulator
870
871         GINAC_ASSERT(is_a<symbol>(r.lhs()));
872         const ex& sym = r.lhs();
873                 
874         // holds ldegrees of the series of individual factors
875         std::vector<int> ldegrees;
876         std::vector<bool> ldegree_redo;
877
878         // find minimal degrees
879         // first round: obtain a bound up to which minimal degrees have to be
880         // considered
881         for (auto & it : seq) {
882
883                 ex expon = it.coeff;
884                 int factor = 1;
885                 ex buf;
886                 if (expon.info(info_flags::integer)) {
887                         buf = it.rest;
888                         factor = ex_to<numeric>(expon).to_int();
889                 } else {
890                         buf = recombine_pair_to_ex(it);
891                 }
892
893                 int real_ldegree = 0;
894                 bool flag_redo = false;
895                 try {
896                         real_ldegree = buf.expand().ldegree(sym-r.rhs());
897                 } catch (std::runtime_error) {}
898
899                 if (real_ldegree == 0) {
900                         if ( factor < 0 ) {
901                                 // This case must terminate, otherwise we would have division by
902                                 // zero.
903                                 int orderloop = 0;
904                                 do {
905                                         orderloop++;
906                                         real_ldegree = buf.series(r, orderloop, options).ldegree(sym);
907                                 } while (real_ldegree == orderloop);
908                         } else {
909                                 // Here it is possible that buf does not have a ldegree, therefore
910                                 // check only if ldegree is negative, otherwise reconsider the case
911                                 // in the second round.
912                                 real_ldegree = buf.series(r, 0, options).ldegree(sym);
913                                 if (real_ldegree == 0)
914                                         flag_redo = true;
915                         }
916                 }
917
918                 ldegrees.push_back(factor * real_ldegree);
919                 ldegree_redo.push_back(flag_redo);
920         }
921
922         int degbound = order-std::accumulate(ldegrees.begin(), ldegrees.end(), 0);
923         // Second round: determine the remaining positive ldegrees by the series
924         // method.
925         // here we can ignore ldegrees larger than degbound
926         size_t j = 0;
927         for (auto & it : seq) {
928                 if ( ldegree_redo[j] ) {
929                         ex expon = it.coeff;
930                         int factor = 1;
931                         ex buf;
932                         if (expon.info(info_flags::integer)) {
933                                 buf = it.rest;
934                                 factor = ex_to<numeric>(expon).to_int();
935                         } else {
936                                 buf = recombine_pair_to_ex(it);
937                         }
938                         int real_ldegree = 0;
939                         int orderloop = 0;
940                         do {
941                                 orderloop++;
942                                 real_ldegree = buf.series(r, orderloop, options).ldegree(sym);
943                         } while ((real_ldegree == orderloop)
944                               && (factor*real_ldegree < degbound));
945                         ldegrees[j] = factor * real_ldegree;
946                         degbound -= factor * real_ldegree;
947                 }
948                 j++;
949         }
950
951         int degsum = std::accumulate(ldegrees.begin(), ldegrees.end(), 0);
952
953         if (degsum >= order) {
954                 epvector epv { expair(Order(_ex1), order) };
955                 return dynallocate<pseries>(r, std::move(epv));
956         }
957
958         // Multiply with remaining terms
959         auto itd = ldegrees.begin();
960         for (auto it=seq.begin(), itend=seq.end(); it!=itend; ++it, ++itd) {
961
962                 // do series expansion with adjusted order
963                 ex op = recombine_pair_to_ex(*it).series(r, order-degsum+(*itd), options);
964
965                 // Series multiplication
966                 if (it == seq.begin())
967                         acc = ex_to<pseries>(op);
968                 else
969                         acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
970         }
971
972         return acc.mul_const(ex_to<numeric>(overall_coeff));
973 }
974
975
976 /** Compute the p-th power of a series.
977  *
978  *  @param p  power to compute
979  *  @param deg  truncation order of series calculation */
980 ex pseries::power_const(const numeric &p, int deg) const
981 {
982         // method:
983         // (due to Leonhard Euler)
984         // let A(x) be this series and for the time being let it start with a
985         // constant (later we'll generalize):
986         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
987         // We want to compute
988         //     C(x) = A(x)^p
989         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
990         // Taking the derivative on both sides and multiplying with A(x) one
991         // immediately arrives at
992         //     C'(x)*A(x) = p*C(x)*A'(x)
993         // Multiplying this out and comparing coefficients we get the recurrence
994         // formula
995         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
996         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
997         // which can easily be solved given the starting value c_0 = (a_0)^p.
998         // For the more general case where the leading coefficient of A(x) is not
999         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
1000         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
1001         // then of course x^(p*m) but the recurrence formula still holds.
1002         
1003         if (seq.empty()) {
1004                 // as a special case, handle the empty (zero) series honoring the
1005                 // usual power laws such as implemented in power::eval()
1006                 if (p.real().is_zero())
1007                         throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
1008                 else if (p.real().is_negative())
1009                         throw pole_error("pseries::power_const(): division by zero",1);
1010                 else
1011                         return *this;
1012         }
1013         
1014         const int ldeg = ldegree(var);
1015         if (!(p*ldeg).is_integer())
1016                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
1017
1018         // adjust number of coefficients
1019         int numcoeff = deg - (p*ldeg).to_int();
1020         if (numcoeff <= 0) {
1021                 epvector epv { expair(Order(_ex1), deg) };
1022                 return dynallocate<pseries>(relational(var,point), std::move(epv));
1023         }
1024         
1025         // O(x^n)^(-m) is undefined
1026         if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
1027                 throw pole_error("pseries::power_const(): division by zero",1);
1028         
1029         // Compute coefficients of the powered series
1030         exvector co;
1031         co.reserve(numcoeff);
1032         co.push_back(power(coeff(var, ldeg), p));
1033         for (int i=1; i<numcoeff; ++i) {
1034                 ex sum = _ex0;
1035                 for (int j=1; j<=i; ++j) {
1036                         ex c = coeff(var, j + ldeg);
1037                         if (is_order_function(c)) {
1038                                 co.push_back(Order(_ex1));
1039                                 break;
1040                         } else
1041                                 sum += (p * j - (i - j)) * co[i - j] * c;
1042                 }
1043                 co.push_back(sum / coeff(var, ldeg) / i);
1044         }
1045         
1046         // Construct new series (of non-zero coefficients)
1047         epvector new_seq;
1048         bool higher_order = false;
1049         for (int i=0; i<numcoeff; ++i) {
1050                 if (!co[i].is_zero())
1051                         new_seq.push_back(expair(co[i], p * ldeg + i));
1052                 if (is_order_function(co[i])) {
1053                         higher_order = true;
1054                         break;
1055                 }
1056         }
1057         if (!higher_order)
1058                 new_seq.push_back(expair(Order(_ex1), p * ldeg + numcoeff));
1059
1060         return pseries(relational(var,point), std::move(new_seq));
1061 }
1062
1063
1064 /** Return a new pseries object with the powers shifted by deg. */
1065 pseries pseries::shift_exponents(int deg) const
1066 {
1067         epvector newseq = seq;
1068         for (auto & it : newseq)
1069                 it.coeff += deg;
1070         return pseries(relational(var, point), std::move(newseq));
1071 }
1072
1073
1074 /** Implementation of ex::series() for powers. This performs Laurent expansion
1075  *  of reciprocals of series at singularities.
1076  *  @see ex::series */
1077 ex power::series(const relational & r, int order, unsigned options) const
1078 {
1079         // If basis is already a series, just power it
1080         if (is_exactly_a<pseries>(basis))
1081                 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
1082
1083         // Basis is not a series, may there be a singularity?
1084         bool must_expand_basis = false;
1085         try {
1086                 basis.subs(r, subs_options::no_pattern);
1087         } catch (pole_error) {
1088                 must_expand_basis = true;
1089         }
1090
1091         bool exponent_is_regular = true;
1092         try {
1093                 exponent.subs(r, subs_options::no_pattern);
1094         } catch (pole_error) {
1095                 exponent_is_regular = false;
1096         }
1097
1098         if (!exponent_is_regular) {
1099                 ex l = exponent*log(basis);
1100                 // this == exp(l);
1101                 ex le = l.series(r, order, options);
1102                 // Note: expanding exp(l) won't help, since that will attempt
1103                 // Taylor expansion, and fail (because exponent is "singular")
1104                 // Still l itself might be expanded in Taylor series.
1105                 // Examples:
1106                 // sin(x)/x*log(cos(x))
1107                 // 1/x*log(1 + x)
1108                 return exp(le).series(r, order, options);
1109                 // Note: if l happens to have a Laurent expansion (with
1110                 // negative powers of (var - point)), expanding exp(le)
1111                 // will barf (which is The Right Thing).
1112         }
1113
1114         // Is the expression of type something^(-int)?
1115         if (!must_expand_basis && !exponent.info(info_flags::negint)
1116          && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1117                 return basic::series(r, order, options);
1118
1119         // Is the expression of type 0^something?
1120         if (!must_expand_basis && !basis.subs(r, subs_options::no_pattern).is_zero()
1121          && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1122                 return basic::series(r, order, options);
1123
1124         // Singularity encountered, is the basis equal to (var - point)?
1125         if (basis.is_equal(r.lhs() - r.rhs())) {
1126                 epvector new_seq;
1127                 if (ex_to<numeric>(exponent).to_int() < order)
1128                         new_seq.push_back(expair(_ex1, exponent));
1129                 else
1130                         new_seq.push_back(expair(Order(_ex1), exponent));
1131                 return pseries(r, std::move(new_seq));
1132         }
1133
1134         // No, expand basis into series
1135
1136         numeric numexp;
1137         if (is_a<numeric>(exponent)) {
1138                 numexp = ex_to<numeric>(exponent);
1139         } else {
1140                 numexp = 0;
1141         }
1142         const ex& sym = r.lhs();
1143         // find existing minimal degree
1144         ex eb = basis.expand();
1145         int real_ldegree = 0;
1146         if (eb.info(info_flags::rational_function))
1147                 real_ldegree = eb.ldegree(sym-r.rhs());
1148         if (real_ldegree == 0) {
1149                 int orderloop = 0;
1150                 do {
1151                         orderloop++;
1152                         real_ldegree = basis.series(r, orderloop, options).ldegree(sym);
1153                 } while (real_ldegree == orderloop);
1154         }
1155
1156         if (!(real_ldegree*numexp).is_integer())
1157                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
1158         ex e = basis.series(r, (order + real_ldegree*(1-numexp)).to_int(), options);
1159         
1160         ex result;
1161         try {
1162                 result = ex_to<pseries>(e).power_const(numexp, order);
1163         } catch (pole_error) {
1164                 epvector ser { expair(Order(_ex1), order) };
1165                 result = pseries(r, std::move(ser));
1166         }
1167
1168         return result;
1169 }
1170
1171
1172 /** Re-expansion of a pseries object. */
1173 ex pseries::series(const relational & r, int order, unsigned options) const
1174 {
1175         const ex p = r.rhs();
1176         GINAC_ASSERT(is_a<symbol>(r.lhs()));
1177         const symbol &s = ex_to<symbol>(r.lhs());
1178         
1179         if (var.is_equal(s) && point.is_equal(p)) {
1180                 if (order > degree(s))
1181                         return *this;
1182                 else {
1183                         epvector new_seq;
1184                         for (auto & it : seq) {
1185                                 int o = ex_to<numeric>(it.coeff).to_int();
1186                                 if (o >= order) {
1187                                         new_seq.push_back(expair(Order(_ex1), o));
1188                                         break;
1189                                 }
1190                                 new_seq.push_back(it);
1191                         }
1192                         return pseries(r, std::move(new_seq));
1193                 }
1194         } else
1195                 return convert_to_poly().series(r, order, options);
1196 }
1197
1198 ex integral::series(const relational & r, int order, unsigned options) const
1199 {
1200         if (x.subs(r) != x)
1201                 throw std::logic_error("Cannot series expand wrt dummy variable");
1202         
1203         // Expanding integrand with r substituted taken in boundaries.
1204         ex fseries = f.series(r, order, options);
1205         epvector fexpansion;
1206         fexpansion.reserve(fseries.nops());
1207         for (size_t i=0; i<fseries.nops(); ++i) {
1208                 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1209                 currcoeff = (currcoeff == Order(_ex1))
1210                         ? currcoeff
1211                         : integral(x, a.subs(r), b.subs(r), currcoeff);
1212                 if (currcoeff != 0)
1213                         fexpansion.push_back(
1214                                 expair(currcoeff, ex_to<pseries>(fseries).exponop(i)));
1215         }
1216
1217         // Expanding lower boundary
1218         ex result = dynallocate<pseries>(r, std::move(fexpansion));
1219         ex aseries = (a-a.subs(r)).series(r, order, options);
1220         fseries = f.series(x == (a.subs(r)), order, options);
1221         for (size_t i=0; i<fseries.nops(); ++i) {
1222                 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1223                 if (is_order_function(currcoeff))
1224                         break;
1225                 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1226                 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1227                 currcoeff = currcoeff.series(r, orderforf);
1228                 ex term = ex_to<pseries>(aseries).power_const(ex_to<numeric>(currexpon+1),order);
1229                 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(-1/(currexpon+1)));
1230                 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1231                 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1232         }
1233
1234         // Expanding upper boundary
1235         ex bseries = (b-b.subs(r)).series(r, order, options);
1236         fseries = f.series(x == (b.subs(r)), order, options);
1237         for (size_t i=0; i<fseries.nops(); ++i) {
1238                 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1239                 if (is_order_function(currcoeff))
1240                         break;
1241                 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1242                 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1243                 currcoeff = currcoeff.series(r, orderforf);
1244                 ex term = ex_to<pseries>(bseries).power_const(ex_to<numeric>(currexpon+1),order);
1245                 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(1/(currexpon+1)));
1246                 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1247                 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1248         }
1249
1250         return result;
1251 }
1252
1253
1254 /** Compute the truncated series expansion of an expression.
1255  *  This function returns an expression containing an object of class pseries 
1256  *  to represent the series. If the series does not terminate within the given
1257  *  truncation order, the last term of the series will be an order term.
1258  *
1259  *  @param r  expansion relation, lhs holds variable and rhs holds point
1260  *  @param order  truncation order of series calculations
1261  *  @param options  of class series_options
1262  *  @return an expression holding a pseries object */
1263 ex ex::series(const ex & r, int order, unsigned options) const
1264 {
1265         ex e;
1266         relational rel_;
1267         
1268         if (is_a<relational>(r))
1269                 rel_ = ex_to<relational>(r);
1270         else if (is_a<symbol>(r))
1271                 rel_ = relational(r,_ex0);
1272         else
1273                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
1274         
1275         e = bp->series(rel_, order, options);
1276         return e;
1277 }
1278
1279 GINAC_BIND_UNARCHIVER(pseries);
1280
1281 } // namespace GiNaC