]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
bd8e4803a0feb57e9778ceda4cfe4d8e3cd3c56a
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2006 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
22  */
23
24 #include <numeric>
25 #include <stdexcept>
26
27 #include "pseries.h"
28 #include "add.h"
29 #include "inifcns.h" // for Order function
30 #include "lst.h"
31 #include "mul.h"
32 #include "power.h"
33 #include "relational.h"
34 #include "operators.h"
35 #include "symbol.h"
36 #include "integral.h"
37 #include "archive.h"
38 #include "utils.h"
39
40 namespace GiNaC {
41
42 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(pseries, basic,
43   print_func<print_context>(&pseries::do_print).
44   print_func<print_latex>(&pseries::do_print_latex).
45   print_func<print_tree>(&pseries::do_print_tree).
46   print_func<print_python>(&pseries::do_print_python).
47   print_func<print_python_repr>(&pseries::do_print_python_repr))
48
49
50 /*
51  *  Default constructor
52  */
53
54 pseries::pseries() : inherited(&pseries::tinfo_static) { }
55
56
57 /*
58  *  Other ctors
59  */
60
61 /** Construct pseries from a vector of coefficients and powers.
62  *  expair.rest holds the coefficient, expair.coeff holds the power.
63  *  The powers must be integers (positive or negative) and in ascending order;
64  *  the last coefficient can be Order(_ex1) to represent a truncated,
65  *  non-terminating series.
66  *
67  *  @param rel_  expansion variable and point (must hold a relational)
68  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
69  *  @return newly constructed pseries */
70 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(&pseries::tinfo_static), seq(ops_)
71 {
72         GINAC_ASSERT(is_a<relational>(rel_));
73         GINAC_ASSERT(is_a<symbol>(rel_.lhs()));
74         point = rel_.rhs();
75         var = rel_.lhs();
76 }
77
78
79 /*
80  *  Archiving
81  */
82
83 pseries::pseries(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst)
84 {
85         archive_node::archive_node_cit first = n.find_first("coeff");
86         archive_node::archive_node_cit last = n.find_last("power");
87         ++last;
88         seq.reserve((last-first)/2);
89
90         for (archive_node::archive_node_cit loc = first; loc < last;) {
91                 ex rest;
92                 ex coeff;
93                 n.find_ex_by_loc(loc++, rest, sym_lst);
94                 n.find_ex_by_loc(loc++, coeff, sym_lst);
95                 seq.push_back(expair(rest, coeff));
96         }
97
98         n.find_ex("var", var, sym_lst);
99         n.find_ex("point", point, sym_lst);
100 }
101
102 void pseries::archive(archive_node &n) const
103 {
104         inherited::archive(n);
105         epvector::const_iterator i = seq.begin(), iend = seq.end();
106         while (i != iend) {
107                 n.add_ex("coeff", i->rest);
108                 n.add_ex("power", i->coeff);
109                 ++i;
110         }
111         n.add_ex("var", var);
112         n.add_ex("point", point);
113 }
114
115 DEFAULT_UNARCHIVE(pseries)
116
117 //////////
118 // functions overriding virtual functions from base classes
119 //////////
120
121 void pseries::print_series(const print_context & c, const char *openbrace, const char *closebrace, const char *mul_sym, const char *pow_sym, unsigned level) const
122 {
123         if (precedence() <= level)
124                 c.s << '(';
125                 
126         // objects of type pseries must not have any zero entries, so the
127         // trivial (zero) pseries needs a special treatment here:
128         if (seq.empty())
129                 c.s << '0';
130
131         epvector::const_iterator i = seq.begin(), end = seq.end();
132         while (i != end) {
133
134                 // print a sign, if needed
135                 if (i != seq.begin())
136                         c.s << '+';
137
138                 if (!is_order_function(i->rest)) {
139
140                         // print 'rest', i.e. the expansion coefficient
141                         if (i->rest.info(info_flags::numeric) &&
142                                 i->rest.info(info_flags::positive)) {
143                                 i->rest.print(c);
144                         } else {
145                                 c.s << openbrace << '(';
146                                 i->rest.print(c);
147                                 c.s << ')' << closebrace;
148                         }
149
150                         // print 'coeff', something like (x-1)^42
151                         if (!i->coeff.is_zero()) {
152                                 c.s << mul_sym;
153                                 if (!point.is_zero()) {
154                                         c.s << openbrace << '(';
155                                         (var-point).print(c);
156                                         c.s << ')' << closebrace;
157                                 } else
158                                         var.print(c);
159                                 if (i->coeff.compare(_ex1)) {
160                                         c.s << pow_sym;
161                                         c.s << openbrace;
162                                         if (i->coeff.info(info_flags::negative)) {
163                                                 c.s << '(';
164                                                 i->coeff.print(c);
165                                                 c.s << ')';
166                                         } else
167                                                 i->coeff.print(c);
168                                         c.s << closebrace;
169                                 }
170                         }
171                 } else
172                         Order(power(var-point,i->coeff)).print(c);
173                 ++i;
174         }
175
176         if (precedence() <= level)
177                 c.s << ')';
178 }
179
180 void pseries::do_print(const print_context & c, unsigned level) const
181 {
182         print_series(c, "", "", "*", "^", level);
183 }
184
185 void pseries::do_print_latex(const print_latex & c, unsigned level) const
186 {
187         print_series(c, "{", "}", " ", "^", level);
188 }
189
190 void pseries::do_print_python(const print_python & c, unsigned level) const
191 {
192         print_series(c, "", "", "*", "**", level);
193 }
194
195 void pseries::do_print_tree(const print_tree & c, unsigned level) const
196 {
197         c.s << std::string(level, ' ') << class_name() << " @" << this
198             << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
199             << std::endl;
200         size_t num = seq.size();
201         for (size_t i=0; i<num; ++i) {
202                 seq[i].rest.print(c, level + c.delta_indent);
203                 seq[i].coeff.print(c, level + c.delta_indent);
204                 c.s << std::string(level + c.delta_indent, ' ') << "-----" << std::endl;
205         }
206         var.print(c, level + c.delta_indent);
207         point.print(c, level + c.delta_indent);
208 }
209
210 void pseries::do_print_python_repr(const print_python_repr & c, unsigned level) const
211 {
212         c.s << class_name() << "(relational(";
213         var.print(c);
214         c.s << ',';
215         point.print(c);
216         c.s << "),[";
217         size_t num = seq.size();
218         for (size_t i=0; i<num; ++i) {
219                 if (i)
220                         c.s << ',';
221                 c.s << '(';
222                 seq[i].rest.print(c);
223                 c.s << ',';
224                 seq[i].coeff.print(c);
225                 c.s << ')';
226         }
227         c.s << "])";
228 }
229
230 int pseries::compare_same_type(const basic & other) const
231 {
232         GINAC_ASSERT(is_a<pseries>(other));
233         const pseries &o = static_cast<const pseries &>(other);
234         
235         // first compare the lengths of the series...
236         if (seq.size()>o.seq.size())
237                 return 1;
238         if (seq.size()<o.seq.size())
239                 return -1;
240         
241         // ...then the expansion point...
242         int cmpval = var.compare(o.var);
243         if (cmpval)
244                 return cmpval;
245         cmpval = point.compare(o.point);
246         if (cmpval)
247                 return cmpval;
248         
249         // ...and if that failed the individual elements
250         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
251         while (it!=seq.end() && o_it!=o.seq.end()) {
252                 cmpval = it->compare(*o_it);
253                 if (cmpval)
254                         return cmpval;
255                 ++it;
256                 ++o_it;
257         }
258
259         // so they are equal.
260         return 0;
261 }
262
263 /** Return the number of operands including a possible order term. */
264 size_t pseries::nops() const
265 {
266         return seq.size();
267 }
268
269 /** Return the ith term in the series when represented as a sum. */
270 ex pseries::op(size_t i) const
271 {
272         if (i >= seq.size())
273                 throw (std::out_of_range("op() out of range"));
274
275         if (is_order_function(seq[i].rest))
276                 return Order(power(var-point, seq[i].coeff));
277         return seq[i].rest * power(var - point, seq[i].coeff);
278 }
279
280 /** Return degree of highest power of the series.  This is usually the exponent
281  *  of the Order term.  If s is not the expansion variable of the series, the
282  *  series is examined termwise. */
283 int pseries::degree(const ex &s) const
284 {
285         if (var.is_equal(s)) {
286                 // Return last exponent
287                 if (seq.size())
288                         return ex_to<numeric>((seq.end()-1)->coeff).to_int();
289                 else
290                         return 0;
291         } else {
292                 epvector::const_iterator it = seq.begin(), itend = seq.end();
293                 if (it == itend)
294                         return 0;
295                 int max_pow = INT_MIN;
296                 while (it != itend) {
297                         int pow = it->rest.degree(s);
298                         if (pow > max_pow)
299                                 max_pow = pow;
300                         ++it;
301                 }
302                 return max_pow;
303         }
304 }
305
306 /** Return degree of lowest power of the series.  This is usually the exponent
307  *  of the leading term.  If s is not the expansion variable of the series, the
308  *  series is examined termwise.  If s is the expansion variable but the
309  *  expansion point is not zero the series is not expanded to find the degree.
310  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
311 int pseries::ldegree(const ex &s) const
312 {
313         if (var.is_equal(s)) {
314                 // Return first exponent
315                 if (seq.size())
316                         return ex_to<numeric>((seq.begin())->coeff).to_int();
317                 else
318                         return 0;
319         } else {
320                 epvector::const_iterator it = seq.begin(), itend = seq.end();
321                 if (it == itend)
322                         return 0;
323                 int min_pow = INT_MAX;
324                 while (it != itend) {
325                         int pow = it->rest.ldegree(s);
326                         if (pow < min_pow)
327                                 min_pow = pow;
328                         ++it;
329                 }
330                 return min_pow;
331         }
332 }
333
334 /** Return coefficient of degree n in power series if s is the expansion
335  *  variable.  If the expansion point is nonzero, by definition the n=1
336  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
337  *  the expansion took place in the s in the first place).
338  *  If s is not the expansion variable, an attempt is made to convert the
339  *  series to a polynomial and return the corresponding coefficient from
340  *  there. */
341 ex pseries::coeff(const ex &s, int n) const
342 {
343         if (var.is_equal(s)) {
344                 if (seq.empty())
345                         return _ex0;
346                 
347                 // Binary search in sequence for given power
348                 numeric looking_for = numeric(n);
349                 int lo = 0, hi = seq.size() - 1;
350                 while (lo <= hi) {
351                         int mid = (lo + hi) / 2;
352                         GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
353                         int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
354                         switch (cmp) {
355                                 case -1:
356                                         lo = mid + 1;
357                                         break;
358                                 case 0:
359                                         return seq[mid].rest;
360                                 case 1:
361                                         hi = mid - 1;
362                                         break;
363                                 default:
364                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
365                         }
366                 }
367                 return _ex0;
368         } else
369                 return convert_to_poly().coeff(s, n);
370 }
371
372 /** Does nothing. */
373 ex pseries::collect(const ex &s, bool distributed) const
374 {
375         return *this;
376 }
377
378 /** Perform coefficient-wise automatic term rewriting rules in this class. */
379 ex pseries::eval(int level) const
380 {
381         if (level == 1)
382                 return this->hold();
383         
384         if (level == -max_recursion_level)
385                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
386         
387         // Construct a new series with evaluated coefficients
388         epvector new_seq;
389         new_seq.reserve(seq.size());
390         epvector::const_iterator it = seq.begin(), itend = seq.end();
391         while (it != itend) {
392                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
393                 ++it;
394         }
395         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
396 }
397
398 /** Evaluate coefficients numerically. */
399 ex pseries::evalf(int level) const
400 {
401         if (level == 1)
402                 return *this;
403         
404         if (level == -max_recursion_level)
405                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
406         
407         // Construct a new series with evaluated coefficients
408         epvector new_seq;
409         new_seq.reserve(seq.size());
410         epvector::const_iterator it = seq.begin(), itend = seq.end();
411         while (it != itend) {
412                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
413                 ++it;
414         }
415         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
416 }
417
418 ex pseries::conjugate() const
419 {
420         if(!var.info(info_flags::real))
421                 return conjugate_function(*this).hold();
422
423         epvector * newseq = conjugateepvector(seq);
424         ex newpoint = point.conjugate();
425
426         if (!newseq     && are_ex_trivially_equal(point, newpoint)) {
427                 return *this;
428         }
429
430         ex result = (new pseries(var==newpoint, newseq ? *newseq : seq))->setflag(status_flags::dynallocated);
431         if (newseq) {
432                 delete newseq;
433         }
434         return result;
435 }
436
437 ex pseries::real_part() const
438 {
439         if(!var.info(info_flags::real))
440                 return real_part_function(*this).hold();
441         ex newpoint = point.real_part();
442         if(newpoint != point)
443                 return real_part_function(*this).hold();
444
445         epvector v;
446         v.reserve(seq.size());
447         for(epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i)
448                 v.push_back(expair((i->rest).real_part(), i->coeff));
449         return (new pseries(var==point, v))->setflag(status_flags::dynallocated);
450 }
451
452 ex pseries::imag_part() const
453 {
454         if(!var.info(info_flags::real))
455                 return imag_part_function(*this).hold();
456         ex newpoint = point.real_part();
457         if(newpoint != point)
458                 return imag_part_function(*this).hold();
459
460         epvector v;
461         v.reserve(seq.size());
462         for(epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i)
463                 v.push_back(expair((i->rest).imag_part(), i->coeff));
464         return (new pseries(var==point, v))->setflag(status_flags::dynallocated);
465 }
466
467 ex pseries::eval_integ() const
468 {
469         epvector *newseq = NULL;
470         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
471                 if (newseq) {
472                         newseq->push_back(expair(i->rest.eval_integ(), i->coeff));
473                         continue;
474                 }
475                 ex newterm = i->rest.eval_integ();
476                 if (!are_ex_trivially_equal(newterm, i->rest)) {
477                         newseq = new epvector;
478                         newseq->reserve(seq.size());
479                         for (epvector::const_iterator j=seq.begin(); j!=i; ++j)
480                                 newseq->push_back(*j);
481                         newseq->push_back(expair(newterm, i->coeff));
482                 }
483         }
484
485         ex newpoint = point.eval_integ();
486         if (newseq || !are_ex_trivially_equal(newpoint, point))
487                 return (new pseries(var==newpoint, *newseq))
488                        ->setflag(status_flags::dynallocated);
489         return *this;
490 }
491
492 ex pseries::subs(const exmap & m, unsigned options) const
493 {
494         // If expansion variable is being substituted, convert the series to a
495         // polynomial and do the substitution there because the result might
496         // no longer be a power series
497         if (m.find(var) != m.end())
498                 return convert_to_poly(true).subs(m, options);
499         
500         // Otherwise construct a new series with substituted coefficients and
501         // expansion point
502         epvector newseq;
503         newseq.reserve(seq.size());
504         epvector::const_iterator it = seq.begin(), itend = seq.end();
505         while (it != itend) {
506                 newseq.push_back(expair(it->rest.subs(m, options), it->coeff));
507                 ++it;
508         }
509         return (new pseries(relational(var,point.subs(m, options)), newseq))->setflag(status_flags::dynallocated);
510 }
511
512 /** Implementation of ex::expand() for a power series.  It expands all the
513  *  terms individually and returns the resulting series as a new pseries. */
514 ex pseries::expand(unsigned options) const
515 {
516         epvector newseq;
517         epvector::const_iterator i = seq.begin(), end = seq.end();
518         while (i != end) {
519                 ex restexp = i->rest.expand();
520                 if (!restexp.is_zero())
521                         newseq.push_back(expair(restexp, i->coeff));
522                 ++i;
523         }
524         return (new pseries(relational(var,point), newseq))
525                 ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
526 }
527
528 /** Implementation of ex::diff() for a power series.
529  *  @see ex::diff */
530 ex pseries::derivative(const symbol & s) const
531 {
532         epvector new_seq;
533         epvector::const_iterator it = seq.begin(), itend = seq.end();
534
535         if (s == var) {
536                 
537                 // FIXME: coeff might depend on var
538                 while (it != itend) {
539                         if (is_order_function(it->rest)) {
540                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
541                         } else {
542                                 ex c = it->rest * it->coeff;
543                                 if (!c.is_zero())
544                                         new_seq.push_back(expair(c, it->coeff - 1));
545                         }
546                         ++it;
547                 }
548
549         } else {
550
551                 while (it != itend) {
552                         if (is_order_function(it->rest)) {
553                                 new_seq.push_back(*it);
554                         } else {
555                                 ex c = it->rest.diff(s);
556                                 if (!c.is_zero())
557                                         new_seq.push_back(expair(c, it->coeff));
558                         }
559                         ++it;
560                 }
561         }
562
563         return pseries(relational(var,point), new_seq);
564 }
565
566 ex pseries::convert_to_poly(bool no_order) const
567 {
568         ex e;
569         epvector::const_iterator it = seq.begin(), itend = seq.end();
570         
571         while (it != itend) {
572                 if (is_order_function(it->rest)) {
573                         if (!no_order)
574                                 e += Order(power(var - point, it->coeff));
575                 } else
576                         e += it->rest * power(var - point, it->coeff);
577                 ++it;
578         }
579         return e;
580 }
581
582 bool pseries::is_terminating() const
583 {
584         return seq.empty() || !is_order_function((seq.end()-1)->rest);
585 }
586
587 ex pseries::coeffop(size_t i) const
588 {
589         if (i >=nops())
590                 throw (std::out_of_range("coeffop() out of range"));
591         return seq[i].rest;
592 }
593
594 ex pseries::exponop(size_t i) const
595 {
596         if (i >= nops())
597                 throw (std::out_of_range("exponop() out of range"));
598         return seq[i].coeff;
599 }
600
601
602 /*
603  *  Implementations of series expansion
604  */
605
606 /** Default implementation of ex::series(). This performs Taylor expansion.
607  *  @see ex::series */
608 ex basic::series(const relational & r, int order, unsigned options) const
609 {
610         epvector seq;
611         const symbol &s = ex_to<symbol>(r.lhs());
612
613         // default for order-values that make no sense for Taylor expansion
614         if ((order <= 0) && this->has(s)) {
615                 seq.push_back(expair(Order(_ex1), order));
616                 return pseries(r, seq);
617         }
618
619         // do Taylor expansion
620         numeric fac = 1;
621         ex deriv = *this;
622         ex coeff = deriv.subs(r, subs_options::no_pattern);
623
624         if (!coeff.is_zero()) {
625                 seq.push_back(expair(coeff, _ex0));
626         }
627
628         int n;
629         for (n=1; n<order; ++n) {
630                 fac = fac.mul(n);
631                 // We need to test for zero in order to see if the series terminates.
632                 // The problem is that there is no such thing as a perfect test for
633                 // zero.  Expanding the term occasionally helps a little...
634                 deriv = deriv.diff(s).expand();
635                 if (deriv.is_zero())  // Series terminates
636                         return pseries(r, seq);
637
638                 coeff = deriv.subs(r, subs_options::no_pattern);
639                 if (!coeff.is_zero())
640                         seq.push_back(expair(fac.inverse() * coeff, n));
641         }
642         
643         // Higher-order terms, if present
644         deriv = deriv.diff(s);
645         if (!deriv.expand().is_zero())
646                 seq.push_back(expair(Order(_ex1), n));
647         return pseries(r, seq);
648 }
649
650
651 /** Implementation of ex::series() for symbols.
652  *  @see ex::series */
653 ex symbol::series(const relational & r, int order, unsigned options) const
654 {
655         epvector seq;
656         const ex point = r.rhs();
657         GINAC_ASSERT(is_a<symbol>(r.lhs()));
658
659         if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
660                 if (order > 0 && !point.is_zero())
661                         seq.push_back(expair(point, _ex0));
662                 if (order > 1)
663                         seq.push_back(expair(_ex1, _ex1));
664                 else
665                         seq.push_back(expair(Order(_ex1), numeric(order)));
666         } else
667                 seq.push_back(expair(*this, _ex0));
668         return pseries(r, seq);
669 }
670
671
672 /** Add one series object to another, producing a pseries object that
673  *  represents the sum.
674  *
675  *  @param other  pseries object to add with
676  *  @return the sum as a pseries */
677 ex pseries::add_series(const pseries &other) const
678 {
679         // Adding two series with different variables or expansion points
680         // results in an empty (constant) series 
681         if (!is_compatible_to(other)) {
682                 epvector nul;
683                 nul.push_back(expair(Order(_ex1), _ex0));
684                 return pseries(relational(var,point), nul);
685         }
686         
687         // Series addition
688         epvector new_seq;
689         epvector::const_iterator a = seq.begin();
690         epvector::const_iterator b = other.seq.begin();
691         epvector::const_iterator a_end = seq.end();
692         epvector::const_iterator b_end = other.seq.end();
693         int pow_a = INT_MAX, pow_b = INT_MAX;
694         for (;;) {
695                 // If a is empty, fill up with elements from b and stop
696                 if (a == a_end) {
697                         while (b != b_end) {
698                                 new_seq.push_back(*b);
699                                 ++b;
700                         }
701                         break;
702                 } else
703                         pow_a = ex_to<numeric>((*a).coeff).to_int();
704                 
705                 // If b is empty, fill up with elements from a and stop
706                 if (b == b_end) {
707                         while (a != a_end) {
708                                 new_seq.push_back(*a);
709                                 ++a;
710                         }
711                         break;
712                 } else
713                         pow_b = ex_to<numeric>((*b).coeff).to_int();
714                 
715                 // a and b are non-empty, compare powers
716                 if (pow_a < pow_b) {
717                         // a has lesser power, get coefficient from a
718                         new_seq.push_back(*a);
719                         if (is_order_function((*a).rest))
720                                 break;
721                         ++a;
722                 } else if (pow_b < pow_a) {
723                         // b has lesser power, get coefficient from b
724                         new_seq.push_back(*b);
725                         if (is_order_function((*b).rest))
726                                 break;
727                         ++b;
728                 } else {
729                         // Add coefficient of a and b
730                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
731                                 new_seq.push_back(expair(Order(_ex1), (*a).coeff));
732                                 break;  // Order term ends the sequence
733                         } else {
734                                 ex sum = (*a).rest + (*b).rest;
735                                 if (!(sum.is_zero()))
736                                         new_seq.push_back(expair(sum, numeric(pow_a)));
737                                 ++a;
738                                 ++b;
739                         }
740                 }
741         }
742         return pseries(relational(var,point), new_seq);
743 }
744
745
746 /** Implementation of ex::series() for sums. This performs series addition when
747  *  adding pseries objects.
748  *  @see ex::series */
749 ex add::series(const relational & r, int order, unsigned options) const
750 {
751         ex acc; // Series accumulator
752         
753         // Get first term from overall_coeff
754         acc = overall_coeff.series(r, order, options);
755         
756         // Add remaining terms
757         epvector::const_iterator it = seq.begin();
758         epvector::const_iterator itend = seq.end();
759         for (; it!=itend; ++it) {
760                 ex op;
761                 if (is_exactly_a<pseries>(it->rest))
762                         op = it->rest;
763                 else
764                         op = it->rest.series(r, order, options);
765                 if (!it->coeff.is_equal(_ex1))
766                         op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it->coeff));
767                 
768                 // Series addition
769                 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
770         }
771         return acc;
772 }
773
774
775 /** Multiply a pseries object with a numeric constant, producing a pseries
776  *  object that represents the product.
777  *
778  *  @param other  constant to multiply with
779  *  @return the product as a pseries */
780 ex pseries::mul_const(const numeric &other) const
781 {
782         epvector new_seq;
783         new_seq.reserve(seq.size());
784         
785         epvector::const_iterator it = seq.begin(), itend = seq.end();
786         while (it != itend) {
787                 if (!is_order_function(it->rest))
788                         new_seq.push_back(expair(it->rest * other, it->coeff));
789                 else
790                         new_seq.push_back(*it);
791                 ++it;
792         }
793         return pseries(relational(var,point), new_seq);
794 }
795
796
797 /** Multiply one pseries object to another, producing a pseries object that
798  *  represents the product.
799  *
800  *  @param other  pseries object to multiply with
801  *  @return the product as a pseries */
802 ex pseries::mul_series(const pseries &other) const
803 {
804         // Multiplying two series with different variables or expansion points
805         // results in an empty (constant) series 
806         if (!is_compatible_to(other)) {
807                 epvector nul;
808                 nul.push_back(expair(Order(_ex1), _ex0));
809                 return pseries(relational(var,point), nul);
810         }
811
812         if (seq.empty() || other.seq.empty()) {
813                 return (new pseries(var==point, epvector()))
814                        ->setflag(status_flags::dynallocated);
815         }
816         
817         // Series multiplication
818         epvector new_seq;
819         int a_max = degree(var);
820         int b_max = other.degree(var);
821         int a_min = ldegree(var);
822         int b_min = other.ldegree(var);
823         int cdeg_min = a_min + b_min;
824         int cdeg_max = a_max + b_max;
825         
826         int higher_order_a = INT_MAX;
827         int higher_order_b = INT_MAX;
828         if (is_order_function(coeff(var, a_max)))
829                 higher_order_a = a_max + b_min;
830         if (is_order_function(other.coeff(var, b_max)))
831                 higher_order_b = b_max + a_min;
832         int higher_order_c = std::min(higher_order_a, higher_order_b);
833         if (cdeg_max >= higher_order_c)
834                 cdeg_max = higher_order_c - 1;
835         
836         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
837                 ex co = _ex0;
838                 // c(i)=a(0)b(i)+...+a(i)b(0)
839                 for (int i=a_min; cdeg-i>=b_min; ++i) {
840                         ex a_coeff = coeff(var, i);
841                         ex b_coeff = other.coeff(var, cdeg-i);
842                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
843                                 co += a_coeff * b_coeff;
844                 }
845                 if (!co.is_zero())
846                         new_seq.push_back(expair(co, numeric(cdeg)));
847         }
848         if (higher_order_c < INT_MAX)
849                 new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c)));
850         return pseries(relational(var, point), new_seq);
851 }
852
853
854 /** Implementation of ex::series() for product. This performs series
855  *  multiplication when multiplying series.
856  *  @see ex::series */
857 ex mul::series(const relational & r, int order, unsigned options) const
858 {
859         pseries acc; // Series accumulator
860
861         GINAC_ASSERT(is_a<symbol>(r.lhs()));
862         const ex& sym = r.lhs();
863                 
864         // holds ldegrees of the series of individual factors
865         std::vector<int> ldegrees;
866
867         // find minimal degrees
868         const epvector::const_iterator itbeg = seq.begin();
869         const epvector::const_iterator itend = seq.end();
870         for (epvector::const_iterator it=itbeg; it!=itend; ++it) {
871
872                 ex expon = it->coeff;
873                 int factor = 1;
874                 ex buf;
875                 if (expon.info(info_flags::integer)) {
876                         buf = it->rest;
877                         factor = ex_to<numeric>(expon).to_int();
878                 } else {
879                         buf = recombine_pair_to_ex(*it);
880                 }
881
882                 int real_ldegree = 0;
883                 try {
884                         real_ldegree = buf.expand().ldegree(sym-r.rhs());
885                 } catch (std::runtime_error) {}
886
887                 if (real_ldegree == 0) {
888                         int orderloop = 0;
889                         do {
890                                 orderloop++;
891                                 real_ldegree = buf.series(r, orderloop, options).ldegree(sym);
892                         } while (real_ldegree == orderloop);
893                 }
894
895                 ldegrees.push_back(factor * real_ldegree);
896         }
897
898         int degsum = std::accumulate(ldegrees.begin(), ldegrees.end(), 0);
899
900         if (degsum >= order) {
901                 epvector epv;
902                 epv.push_back(expair(Order(_ex1), order));
903                 return (new pseries(r, epv))->setflag(status_flags::dynallocated);
904         }
905
906         // Multiply with remaining terms
907         std::vector<int>::const_iterator itd = ldegrees.begin();
908         for (epvector::const_iterator it=itbeg; it!=itend; ++it, ++itd) {
909
910                 // do series expansion with adjusted order
911                 ex op = recombine_pair_to_ex(*it).series(r, order-degsum+(*itd), options);
912
913                 // Series multiplication
914                 if (it == itbeg)
915                         acc = ex_to<pseries>(op);
916                 else
917                         acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
918         }
919
920         return acc.mul_const(ex_to<numeric>(overall_coeff));
921 }
922
923
924 /** Compute the p-th power of a series.
925  *
926  *  @param p  power to compute
927  *  @param deg  truncation order of series calculation */
928 ex pseries::power_const(const numeric &p, int deg) const
929 {
930         // method:
931         // (due to Leonhard Euler)
932         // let A(x) be this series and for the time being let it start with a
933         // constant (later we'll generalize):
934         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
935         // We want to compute
936         //     C(x) = A(x)^p
937         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
938         // Taking the derivative on both sides and multiplying with A(x) one
939         // immediately arrives at
940         //     C'(x)*A(x) = p*C(x)*A'(x)
941         // Multiplying this out and comparing coefficients we get the recurrence
942         // formula
943         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
944         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
945         // which can easily be solved given the starting value c_0 = (a_0)^p.
946         // For the more general case where the leading coefficient of A(x) is not
947         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
948         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
949         // then of course x^(p*m) but the recurrence formula still holds.
950         
951         if (seq.empty()) {
952                 // as a special case, handle the empty (zero) series honoring the
953                 // usual power laws such as implemented in power::eval()
954                 if (p.real().is_zero())
955                         throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
956                 else if (p.real().is_negative())
957                         throw pole_error("pseries::power_const(): division by zero",1);
958                 else
959                         return *this;
960         }
961         
962         const int ldeg = ldegree(var);
963         if (!(p*ldeg).is_integer())
964                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
965
966         // adjust number of coefficients
967         int numcoeff = deg - (p*ldeg).to_int();
968         if (numcoeff <= 0) {
969                 epvector epv;
970                 epv.reserve(1);
971                 epv.push_back(expair(Order(_ex1), deg));
972                 return (new pseries(relational(var,point), epv))
973                        ->setflag(status_flags::dynallocated);
974         }
975         
976         // O(x^n)^(-m) is undefined
977         if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
978                 throw pole_error("pseries::power_const(): division by zero",1);
979         
980         // Compute coefficients of the powered series
981         exvector co;
982         co.reserve(numcoeff);
983         co.push_back(power(coeff(var, ldeg), p));
984         for (int i=1; i<numcoeff; ++i) {
985                 ex sum = _ex0;
986                 for (int j=1; j<=i; ++j) {
987                         ex c = coeff(var, j + ldeg);
988                         if (is_order_function(c)) {
989                                 co.push_back(Order(_ex1));
990                                 break;
991                         } else
992                                 sum += (p * j - (i - j)) * co[i - j] * c;
993                 }
994                 co.push_back(sum / coeff(var, ldeg) / i);
995         }
996         
997         // Construct new series (of non-zero coefficients)
998         epvector new_seq;
999         bool higher_order = false;
1000         for (int i=0; i<numcoeff; ++i) {
1001                 if (!co[i].is_zero())
1002                         new_seq.push_back(expair(co[i], p * ldeg + i));
1003                 if (is_order_function(co[i])) {
1004                         higher_order = true;
1005                         break;
1006                 }
1007         }
1008         if (!higher_order)
1009                 new_seq.push_back(expair(Order(_ex1), p * ldeg + numcoeff));
1010
1011         return pseries(relational(var,point), new_seq);
1012 }
1013
1014
1015 /** Return a new pseries object with the powers shifted by deg. */
1016 pseries pseries::shift_exponents(int deg) const
1017 {
1018         epvector newseq = seq;
1019         epvector::iterator i = newseq.begin(), end  = newseq.end();
1020         while (i != end) {
1021                 i->coeff += deg;
1022                 ++i;
1023         }
1024         return pseries(relational(var, point), newseq);
1025 }
1026
1027
1028 /** Implementation of ex::series() for powers. This performs Laurent expansion
1029  *  of reciprocals of series at singularities.
1030  *  @see ex::series */
1031 ex power::series(const relational & r, int order, unsigned options) const
1032 {
1033         // If basis is already a series, just power it
1034         if (is_exactly_a<pseries>(basis))
1035                 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
1036
1037         // Basis is not a series, may there be a singularity?
1038         bool must_expand_basis = false;
1039         try {
1040                 basis.subs(r, subs_options::no_pattern);
1041         } catch (pole_error) {
1042                 must_expand_basis = true;
1043         }
1044
1045         // Is the expression of type something^(-int)?
1046         if (!must_expand_basis && !exponent.info(info_flags::negint)
1047          && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1048                 return basic::series(r, order, options);
1049
1050         // Is the expression of type 0^something?
1051         if (!must_expand_basis && !basis.subs(r, subs_options::no_pattern).is_zero()
1052          && (!is_a<add>(basis) || !is_a<numeric>(exponent)))
1053                 return basic::series(r, order, options);
1054
1055         // Singularity encountered, is the basis equal to (var - point)?
1056         if (basis.is_equal(r.lhs() - r.rhs())) {
1057                 epvector new_seq;
1058                 if (ex_to<numeric>(exponent).to_int() < order)
1059                         new_seq.push_back(expair(_ex1, exponent));
1060                 else
1061                         new_seq.push_back(expair(Order(_ex1), exponent));
1062                 return pseries(r, new_seq);
1063         }
1064
1065         // No, expand basis into series
1066
1067         numeric numexp;
1068         if (is_a<numeric>(exponent)) {
1069                 numexp = ex_to<numeric>(exponent);
1070         } else {
1071                 numexp = 0;
1072         }
1073         const ex& sym = r.lhs();
1074         // find existing minimal degree
1075         int real_ldegree = basis.expand().ldegree(sym-r.rhs());
1076         if (real_ldegree == 0) {
1077                 int orderloop = 0;
1078                 do {
1079                         orderloop++;
1080                         real_ldegree = basis.series(r, orderloop, options).ldegree(sym);
1081                 } while (real_ldegree == orderloop);
1082         }
1083
1084         if (!(real_ldegree*numexp).is_integer())
1085                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
1086         ex e = basis.series(r, (order + real_ldegree*(1-numexp)).to_int(), options);
1087         
1088         ex result;
1089         try {
1090                 result = ex_to<pseries>(e).power_const(numexp, order);
1091         } catch (pole_error) {
1092                 epvector ser;
1093                 ser.push_back(expair(Order(_ex1), order));
1094                 result = pseries(r, ser);
1095         }
1096
1097         return result;
1098 }
1099
1100
1101 /** Re-expansion of a pseries object. */
1102 ex pseries::series(const relational & r, int order, unsigned options) const
1103 {
1104         const ex p = r.rhs();
1105         GINAC_ASSERT(is_a<symbol>(r.lhs()));
1106         const symbol &s = ex_to<symbol>(r.lhs());
1107         
1108         if (var.is_equal(s) && point.is_equal(p)) {
1109                 if (order > degree(s))
1110                         return *this;
1111                 else {
1112                         epvector new_seq;
1113                         epvector::const_iterator it = seq.begin(), itend = seq.end();
1114                         while (it != itend) {
1115                                 int o = ex_to<numeric>(it->coeff).to_int();
1116                                 if (o >= order) {
1117                                         new_seq.push_back(expair(Order(_ex1), o));
1118                                         break;
1119                                 }
1120                                 new_seq.push_back(*it);
1121                                 ++it;
1122                         }
1123                         return pseries(r, new_seq);
1124                 }
1125         } else
1126                 return convert_to_poly().series(r, order, options);
1127 }
1128
1129 ex integral::series(const relational & r, int order, unsigned options) const
1130 {
1131         if (x.subs(r) != x)
1132                 throw std::logic_error("Cannot series expand wrt dummy variable");
1133         
1134         // Expanding integrant with r substituted taken in boundaries.
1135         ex fseries = f.series(r, order, options);
1136         epvector fexpansion;
1137         fexpansion.reserve(fseries.nops());
1138         for (size_t i=0; i<fseries.nops(); ++i) {
1139                 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1140                 currcoeff = (currcoeff == Order(_ex1))
1141                         ? currcoeff
1142                         : integral(x, a.subs(r), b.subs(r), currcoeff);
1143                 if (currcoeff != 0)
1144                         fexpansion.push_back(
1145                                 expair(currcoeff, ex_to<pseries>(fseries).exponop(i)));
1146         }
1147
1148         // Expanding lower boundary
1149         ex result = (new pseries(r, fexpansion))->setflag(status_flags::dynallocated);
1150         ex aseries = (a-a.subs(r)).series(r, order, options);
1151         fseries = f.series(x == (a.subs(r)), order, options);
1152         for (size_t i=0; i<fseries.nops(); ++i) {
1153                 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1154                 if (is_order_function(currcoeff))
1155                         break;
1156                 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1157                 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1158                 currcoeff = currcoeff.series(r, orderforf);
1159                 ex term = ex_to<pseries>(aseries).power_const(ex_to<numeric>(currexpon+1),order);
1160                 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(-1/(currexpon+1)));
1161                 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1162                 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1163         }
1164
1165         // Expanding upper boundary
1166         ex bseries = (b-b.subs(r)).series(r, order, options);
1167         fseries = f.series(x == (b.subs(r)), order, options);
1168         for (size_t i=0; i<fseries.nops(); ++i) {
1169                 ex currcoeff = ex_to<pseries>(fseries).coeffop(i);
1170                 if (is_order_function(currcoeff))
1171                         break;
1172                 ex currexpon = ex_to<pseries>(fseries).exponop(i);
1173                 int orderforf = order-ex_to<numeric>(currexpon).to_int()-1;
1174                 currcoeff = currcoeff.series(r, orderforf);
1175                 ex term = ex_to<pseries>(bseries).power_const(ex_to<numeric>(currexpon+1),order);
1176                 term = ex_to<pseries>(term).mul_const(ex_to<numeric>(1/(currexpon+1)));
1177                 term = ex_to<pseries>(term).mul_series(ex_to<pseries>(currcoeff));
1178                 result = ex_to<pseries>(result).add_series(ex_to<pseries>(term));
1179         }
1180
1181         return result;
1182 }
1183
1184
1185 /** Compute the truncated series expansion of an expression.
1186  *  This function returns an expression containing an object of class pseries 
1187  *  to represent the series. If the series does not terminate within the given
1188  *  truncation order, the last term of the series will be an order term.
1189  *
1190  *  @param r  expansion relation, lhs holds variable and rhs holds point
1191  *  @param order  truncation order of series calculations
1192  *  @param options  of class series_options
1193  *  @return an expression holding a pseries object */
1194 ex ex::series(const ex & r, int order, unsigned options) const
1195 {
1196         ex e;
1197         relational rel_;
1198         
1199         if (is_a<relational>(r))
1200                 rel_ = ex_to<relational>(r);
1201         else if (is_a<symbol>(r))
1202                 rel_ = relational(r,_ex0);
1203         else
1204                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
1205         
1206         try {
1207                 e = bp->series(rel_, order, options);
1208         } catch (std::exception &x) {
1209                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
1210         }
1211         return e;
1212 }
1213
1214 } // namespace GiNaC