]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
updated with respect to new print() method
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <stdexcept>
25
26 #include "pseries.h"
27 #include "add.h"
28 #include "inifcns.h"
29 #include "lst.h"
30 #include "mul.h"
31 #include "power.h"
32 #include "relational.h"
33 #include "symbol.h"
34 #include "print.h"
35 #include "archive.h"
36 #include "utils.h"
37 #include "debugmsg.h"
38
39 namespace GiNaC {
40
41 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
42
43
44 /*
45  *  Default ctor, dtor, copy ctor, assignment operator and helpers
46  */
47
48 pseries::pseries() : basic(TINFO_pseries)
49 {
50         debugmsg("pseries default ctor", LOGLEVEL_CONSTRUCT);
51 }
52
53 void pseries::copy(const pseries &other)
54 {
55         inherited::copy(other);
56         seq = other.seq;
57         var = other.var;
58         point = other.point;
59 }
60
61 DEFAULT_DESTROY(pseries)
62
63
64 /*
65  *  Other ctors
66  */
67
68 /** Construct pseries from a vector of coefficients and powers.
69  *  expair.rest holds the coefficient, expair.coeff holds the power.
70  *  The powers must be integers (positive or negative) and in ascending order;
71  *  the last coefficient can be Order(_ex1()) to represent a truncated,
72  *  non-terminating series.
73  *
74  *  @param rel_  expansion variable and point (must hold a relational)
75  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
76  *  @return newly constructed pseries */
77 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
78 {
79         debugmsg("pseries ctor from ex,epvector", LOGLEVEL_CONSTRUCT);
80         GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational));
81         GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol));
82         point = rel_.rhs();
83         var = *static_cast<symbol *>(rel_.lhs().bp);
84 }
85
86
87 /*
88  *  Archiving
89  */
90
91 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
92 {
93         debugmsg("pseries ctor from archive_node", LOGLEVEL_CONSTRUCT);
94         for (unsigned int i=0; true; ++i) {
95                 ex rest;
96                 ex coeff;
97                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
98                         seq.push_back(expair(rest, coeff));
99                 else
100                         break;
101         }
102         n.find_ex("var", var, sym_lst);
103         n.find_ex("point", point, sym_lst);
104 }
105
106 void pseries::archive(archive_node &n) const
107 {
108         inherited::archive(n);
109         epvector::const_iterator i = seq.begin(), iend = seq.end();
110         while (i != iend) {
111                 n.add_ex("coeff", i->rest);
112                 n.add_ex("power", i->coeff);
113                 ++i;
114         }
115         n.add_ex("var", var);
116         n.add_ex("point", point);
117 }
118
119 DEFAULT_UNARCHIVE(pseries)
120
121 //////////
122 // functions overriding virtual functions from bases classes
123 //////////
124
125 void pseries::print(const print_context & c, unsigned level) const
126 {
127         debugmsg("pseries print", LOGLEVEL_PRINT);
128
129         if (is_of_type(c, print_tree)) {
130
131                 c.s << std::string(level, ' ') << class_name()
132                     << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
133                     << std::endl;
134                 unsigned delta_indent = static_cast<const print_tree &>(c).delta_indent;
135                 for (unsigned i=0; i<seq.size(); ++i) {
136                         seq[i].rest.print(c, level + delta_indent);
137                         seq[i].coeff.print(c, level + delta_indent);
138                         c.s << std::string(level + delta_indent, ' ') << "-----" << std::endl;
139                 }
140                 var.print(c, level + delta_indent);
141                 point.print(c, level + delta_indent);
142
143         } else {
144
145                 if (precedence <= level)
146                         c.s << "(";
147
148                 // objects of type pseries must not have any zero entries, so the
149                 // trivial (zero) pseries needs a special treatment here:
150                 if (seq.size() == 0)
151                         c.s << '0';
152                 for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
153                         // print a sign, if needed
154                         if (i != seq.begin())
155                                 c.s << '+';
156                         if (!is_order_function(i->rest)) {
157                                 // print 'rest', i.e. the expansion coefficient
158                                 if (i->rest.info(info_flags::numeric) &&
159                                         i->rest.info(info_flags::positive)) {
160                                         i->rest.print(c);
161                                 } else {
162                                         c.s << '(';
163                                         i->rest.print(c);
164                                         c.s << ')';
165                                 }
166                                 // print 'coeff', something like (x-1)^42
167                                 if (!i->coeff.is_zero()) {
168                                         c.s << '*';
169                                         if (!point.is_zero()) {
170                                                 c.s << '(';
171                                                 (var-point).print(c);
172                                                 c.s << ')';
173                                         } else
174                                                 var.print(c);
175                                         if (i->coeff.compare(_ex1())) {
176                                                 c.s << '^';
177                                                 if (i->coeff.info(info_flags::negative)) {
178                                                         c.s << '(';
179                                                         i->coeff.print(c);
180                                                         c.s << ')';
181                                                 } else
182                                                         i->coeff.print(c);
183                                         }
184                                 }
185                         } else
186                                 Order(power(var-point,i->coeff)).print(c);
187                 }
188
189                 if (precedence <= level)
190                         c.s << ")";
191         }
192 }
193
194 int pseries::compare_same_type(const basic & other) const
195 {
196         GINAC_ASSERT(is_of_type(other, pseries));
197         const pseries &o = static_cast<const pseries &>(other);
198         
199         // first compare the lengths of the series...
200         if (seq.size()>o.seq.size())
201                 return 1;
202         if (seq.size()<o.seq.size())
203                 return -1;
204         
205         // ...then the expansion point...
206         int cmpval = var.compare(o.var);
207         if (cmpval)
208                 return cmpval;
209         cmpval = point.compare(o.point);
210         if (cmpval)
211                 return cmpval;
212         
213         // ...and if that failed the individual elements
214         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
215         while (it!=seq.end() && o_it!=o.seq.end()) {
216                 cmpval = it->compare(*o_it);
217                 if (cmpval)
218                         return cmpval;
219                 ++it;
220                 ++o_it;
221         }
222
223         // so they are equal.
224         return 0;
225 }
226
227 /** Return the number of operands including a possible order term. */
228 unsigned pseries::nops(void) const
229 {
230         return seq.size();
231 }
232
233
234 /** Return the ith term in the series when represented as a sum. */
235 ex pseries::op(int i) const
236 {
237         if (i < 0 || unsigned(i) >= seq.size())
238                 throw (std::out_of_range("op() out of range"));
239         return seq[i].rest * power(var - point, seq[i].coeff);
240 }
241
242
243 ex &pseries::let_op(int i)
244 {
245         throw (std::logic_error("let_op not defined for pseries"));
246 }
247
248
249 /** Return degree of highest power of the series.  This is usually the exponent
250  *  of the Order term.  If s is not the expansion variable of the series, the
251  *  series is examined termwise. */
252 int pseries::degree(const ex &s) const
253 {
254         if (var.is_equal(s)) {
255                 // Return last exponent
256                 if (seq.size())
257                         return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
258                 else
259                         return 0;
260         } else {
261                 epvector::const_iterator it = seq.begin(), itend = seq.end();
262                 if (it == itend)
263                         return 0;
264                 int max_pow = INT_MIN;
265                 while (it != itend) {
266                         int pow = it->rest.degree(s);
267                         if (pow > max_pow)
268                                 max_pow = pow;
269                         ++it;
270                 }
271                 return max_pow;
272         }
273 }
274
275 /** Return degree of lowest power of the series.  This is usually the exponent
276  *  of the leading term.  If s is not the expansion variable of the series, the
277  *  series is examined termwise.  If s is the expansion variable but the
278  *  expansion point is not zero the series is not expanded to find the degree.
279  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
280 int pseries::ldegree(const ex &s) const
281 {
282         if (var.is_equal(s)) {
283                 // Return first exponent
284                 if (seq.size())
285                         return ex_to_numeric((*(seq.begin())).coeff).to_int();
286                 else
287                         return 0;
288         } else {
289                 epvector::const_iterator it = seq.begin(), itend = seq.end();
290                 if (it == itend)
291                         return 0;
292                 int min_pow = INT_MAX;
293                 while (it != itend) {
294                         int pow = it->rest.ldegree(s);
295                         if (pow < min_pow)
296                                 min_pow = pow;
297                         ++it;
298                 }
299                 return min_pow;
300         }
301 }
302
303 /** Return coefficient of degree n in power series if s is the expansion
304  *  variable.  If the expansion point is nonzero, by definition the n=1
305  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
306  *  the expansion took place in the s in the first place).
307  *  If s is not the expansion variable, an attempt is made to convert the
308  *  series to a polynomial and return the corresponding coefficient from
309  *  there. */
310 ex pseries::coeff(const ex &s, int n) const
311 {
312         if (var.is_equal(s)) {
313                 if (seq.size() == 0)
314                         return _ex0();
315                 
316                 // Binary search in sequence for given power
317                 numeric looking_for = numeric(n);
318                 int lo = 0, hi = seq.size() - 1;
319                 while (lo <= hi) {
320                         int mid = (lo + hi) / 2;
321                         GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric));
322                         int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for);
323                         switch (cmp) {
324                                 case -1:
325                                         lo = mid + 1;
326                                         break;
327                                 case 0:
328                                         return seq[mid].rest;
329                                 case 1:
330                                         hi = mid - 1;
331                                         break;
332                                 default:
333                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
334                         }
335                 }
336                 return _ex0();
337         } else
338                 return convert_to_poly().coeff(s, n);
339 }
340
341 /** Does nothing. */
342 ex pseries::collect(const ex &s) const
343 {
344         return *this;
345 }
346
347
348 /** Evaluate coefficients. */
349 ex pseries::eval(int level) const
350 {
351         if (level == 1)
352                 return this->hold();
353         
354         if (level == -max_recursion_level)
355                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
356         
357         // Construct a new series with evaluated coefficients
358         epvector new_seq;
359         new_seq.reserve(seq.size());
360         epvector::const_iterator it = seq.begin(), itend = seq.end();
361         while (it != itend) {
362                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
363                 ++it;
364         }
365         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
366 }
367
368
369 /** Evaluate coefficients numerically. */
370 ex pseries::evalf(int level) const
371 {
372         if (level == 1)
373                 return *this;
374         
375         if (level == -max_recursion_level)
376                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
377         
378         // Construct a new series with evaluated coefficients
379         epvector new_seq;
380         new_seq.reserve(seq.size());
381         epvector::const_iterator it = seq.begin(), itend = seq.end();
382         while (it != itend) {
383                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
384                 ++it;
385         }
386         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
387 }
388
389
390 ex pseries::subs(const lst & ls, const lst & lr) const
391 {
392         // If expansion variable is being substituted, convert the series to a
393         // polynomial and do the substitution there because the result might
394         // no longer be a power series
395         if (ls.has(var))
396                 return convert_to_poly(true).subs(ls, lr);
397         
398         // Otherwise construct a new series with substituted coefficients and
399         // expansion point
400         epvector newseq;
401         newseq.reserve(seq.size());
402         epvector::const_iterator it = seq.begin(), itend = seq.end();
403         while (it != itend) {
404                 newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
405                 ++it;
406         }
407         return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated);
408 }
409
410
411 /** Implementation of ex::expand() for a power series.  It expands all the
412  *  terms individually and returns the resulting series as a new pseries. */
413 ex pseries::expand(unsigned options) const
414 {
415         epvector newseq;
416         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
417                 ex restexp = i->rest.expand();
418                 if (!restexp.is_zero())
419                         newseq.push_back(expair(restexp, i->coeff));
420         }
421         return (new pseries(relational(var,point), newseq))
422                 ->setflag(status_flags::dynallocated | status_flags::expanded);
423 }
424
425
426 /** Implementation of ex::diff() for a power series.  It treats the series as a
427  *  polynomial.
428  *  @see ex::diff */
429 ex pseries::derivative(const symbol & s) const
430 {
431         if (s == var) {
432                 epvector new_seq;
433                 epvector::const_iterator it = seq.begin(), itend = seq.end();
434                 
435                 // FIXME: coeff might depend on var
436                 while (it != itend) {
437                         if (is_order_function(it->rest)) {
438                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
439                         } else {
440                                 ex c = it->rest * it->coeff;
441                                 if (!c.is_zero())
442                                         new_seq.push_back(expair(c, it->coeff - 1));
443                         }
444                         ++it;
445                 }
446                 return pseries(relational(var,point), new_seq);
447         } else {
448                 return *this;
449         }
450 }
451
452
453 /** Convert a pseries object to an ordinary polynomial.
454  *
455  *  @param no_order flag: discard higher order terms */
456 ex pseries::convert_to_poly(bool no_order) const
457 {
458         ex e;
459         epvector::const_iterator it = seq.begin(), itend = seq.end();
460         
461         while (it != itend) {
462                 if (is_order_function(it->rest)) {
463                         if (!no_order)
464                                 e += Order(power(var - point, it->coeff));
465                 } else
466                         e += it->rest * power(var - point, it->coeff);
467                 ++it;
468         }
469         return e;
470 }
471
472
473 /** Returns true if there is no order term, i.e. the series terminates and
474  *  false otherwise. */
475 bool pseries::is_terminating(void) const
476 {
477         return seq.size() == 0 || !is_order_function((seq.end()-1)->rest);
478 }
479
480
481 /*
482  *  Implementations of series expansion
483  */
484
485 /** Default implementation of ex::series(). This performs Taylor expansion.
486  *  @see ex::series */
487 ex basic::series(const relational & r, int order, unsigned options) const
488 {
489         epvector seq;
490         numeric fac(1);
491         ex deriv = *this;
492         ex coeff = deriv.subs(r);
493         const symbol &s = static_cast<symbol &>(*r.lhs().bp);
494         
495         if (!coeff.is_zero())
496                 seq.push_back(expair(coeff, numeric(0)));
497         
498         int n;
499         for (n=1; n<order; ++n) {
500                 fac = fac.mul(numeric(n));
501                 deriv = deriv.diff(s).expand();
502                 if (deriv.is_zero()) {
503                         // Series terminates
504                         return pseries(r, seq);
505                 }
506                 coeff = deriv.subs(r);
507                 if (!coeff.is_zero())
508                         seq.push_back(expair(fac.inverse() * coeff, numeric(n)));
509         }
510         
511         // Higher-order terms, if present
512         deriv = deriv.diff(s);
513         if (!deriv.expand().is_zero())
514                 seq.push_back(expair(Order(_ex1()), numeric(n)));
515         return pseries(r, seq);
516 }
517
518
519 /** Implementation of ex::series() for symbols.
520  *  @see ex::series */
521 ex symbol::series(const relational & r, int order, unsigned options) const
522 {
523         epvector seq;
524         const ex point = r.rhs();
525         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
526         ex s = r.lhs();
527         
528         if (this->is_equal(*s.bp)) {
529                 if (order > 0 && !point.is_zero())
530                         seq.push_back(expair(point, _ex0()));
531                 if (order > 1)
532                         seq.push_back(expair(_ex1(), _ex1()));
533                 else
534                         seq.push_back(expair(Order(_ex1()), numeric(order)));
535         } else
536                 seq.push_back(expair(*this, _ex0()));
537         return pseries(r, seq);
538 }
539
540
541 /** Add one series object to another, producing a pseries object that
542  *  represents the sum.
543  *
544  *  @param other  pseries object to add with
545  *  @return the sum as a pseries */
546 ex pseries::add_series(const pseries &other) const
547 {
548         // Adding two series with different variables or expansion points
549         // results in an empty (constant) series 
550         if (!is_compatible_to(other)) {
551                 epvector nul;
552                 nul.push_back(expair(Order(_ex1()), _ex0()));
553                 return pseries(relational(var,point), nul);
554         }
555         
556         // Series addition
557         epvector new_seq;
558         epvector::const_iterator a = seq.begin();
559         epvector::const_iterator b = other.seq.begin();
560         epvector::const_iterator a_end = seq.end();
561         epvector::const_iterator b_end = other.seq.end();
562         int pow_a = INT_MAX, pow_b = INT_MAX;
563         for (;;) {
564                 // If a is empty, fill up with elements from b and stop
565                 if (a == a_end) {
566                         while (b != b_end) {
567                                 new_seq.push_back(*b);
568                                 ++b;
569                         }
570                         break;
571                 } else
572                         pow_a = ex_to_numeric((*a).coeff).to_int();
573                 
574                 // If b is empty, fill up with elements from a and stop
575                 if (b == b_end) {
576                         while (a != a_end) {
577                                 new_seq.push_back(*a);
578                                 ++a;
579                         }
580                         break;
581                 } else
582                         pow_b = ex_to_numeric((*b).coeff).to_int();
583                 
584                 // a and b are non-empty, compare powers
585                 if (pow_a < pow_b) {
586                         // a has lesser power, get coefficient from a
587                         new_seq.push_back(*a);
588                         if (is_order_function((*a).rest))
589                                 break;
590                         ++a;
591                 } else if (pow_b < pow_a) {
592                         // b has lesser power, get coefficient from b
593                         new_seq.push_back(*b);
594                         if (is_order_function((*b).rest))
595                                 break;
596                         ++b;
597                 } else {
598                         // Add coefficient of a and b
599                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
600                                 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
601                                 break;  // Order term ends the sequence
602                         } else {
603                                 ex sum = (*a).rest + (*b).rest;
604                                 if (!(sum.is_zero()))
605                                         new_seq.push_back(expair(sum, numeric(pow_a)));
606                                 ++a;
607                                 ++b;
608                         }
609                 }
610         }
611         return pseries(relational(var,point), new_seq);
612 }
613
614
615 /** Implementation of ex::series() for sums. This performs series addition when
616  *  adding pseries objects.
617  *  @see ex::series */
618 ex add::series(const relational & r, int order, unsigned options) const
619 {
620         ex acc; // Series accumulator
621         
622         // Get first term from overall_coeff
623         acc = overall_coeff.series(r, order, options);
624         
625         // Add remaining terms
626         epvector::const_iterator it = seq.begin();
627         epvector::const_iterator itend = seq.end();
628         for (; it!=itend; ++it) {
629                 ex op;
630                 if (is_ex_exactly_of_type(it->rest, pseries))
631                         op = it->rest;
632                 else
633                         op = it->rest.series(r, order, options);
634                 if (!it->coeff.is_equal(_ex1()))
635                         op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
636                 
637                 // Series addition
638                 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
639         }
640         return acc;
641 }
642
643
644 /** Multiply a pseries object with a numeric constant, producing a pseries
645  *  object that represents the product.
646  *
647  *  @param other  constant to multiply with
648  *  @return the product as a pseries */
649 ex pseries::mul_const(const numeric &other) const
650 {
651         epvector new_seq;
652         new_seq.reserve(seq.size());
653         
654         epvector::const_iterator it = seq.begin(), itend = seq.end();
655         while (it != itend) {
656                 if (!is_order_function(it->rest))
657                         new_seq.push_back(expair(it->rest * other, it->coeff));
658                 else
659                         new_seq.push_back(*it);
660                 ++it;
661         }
662         return pseries(relational(var,point), new_seq);
663 }
664
665
666 /** Multiply one pseries object to another, producing a pseries object that
667  *  represents the product.
668  *
669  *  @param other  pseries object to multiply with
670  *  @return the product as a pseries */
671 ex pseries::mul_series(const pseries &other) const
672 {
673         // Multiplying two series with different variables or expansion points
674         // results in an empty (constant) series 
675         if (!is_compatible_to(other)) {
676                 epvector nul;
677                 nul.push_back(expair(Order(_ex1()), _ex0()));
678                 return pseries(relational(var,point), nul);
679         }
680         
681         // Series multiplication
682         epvector new_seq;
683         
684         int a_max = degree(var);
685         int b_max = other.degree(var);
686         int a_min = ldegree(var);
687         int b_min = other.ldegree(var);
688         int cdeg_min = a_min + b_min;
689         int cdeg_max = a_max + b_max;
690         
691         int higher_order_a = INT_MAX;
692         int higher_order_b = INT_MAX;
693         if (is_order_function(coeff(var, a_max)))
694                 higher_order_a = a_max + b_min;
695         if (is_order_function(other.coeff(var, b_max)))
696                 higher_order_b = b_max + a_min;
697         int higher_order_c = std::min(higher_order_a, higher_order_b);
698         if (cdeg_max >= higher_order_c)
699                 cdeg_max = higher_order_c - 1;
700         
701         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
702                 ex co = _ex0();
703                 // c(i)=a(0)b(i)+...+a(i)b(0)
704                 for (int i=a_min; cdeg-i>=b_min; ++i) {
705                         ex a_coeff = coeff(var, i);
706                         ex b_coeff = other.coeff(var, cdeg-i);
707                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
708                                 co += a_coeff * b_coeff;
709                 }
710                 if (!co.is_zero())
711                         new_seq.push_back(expair(co, numeric(cdeg)));
712         }
713         if (higher_order_c < INT_MAX)
714                 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
715         return pseries(relational(var, point), new_seq);
716 }
717
718
719 /** Implementation of ex::series() for product. This performs series
720  *  multiplication when multiplying series.
721  *  @see ex::series */
722 ex mul::series(const relational & r, int order, unsigned options) const
723 {
724         ex acc; // Series accumulator
725         
726         // Get first term from overall_coeff
727         acc = overall_coeff.series(r, order, options);
728         
729         // Multiply with remaining terms
730         epvector::const_iterator it = seq.begin();
731         epvector::const_iterator itend = seq.end();
732         for (; it!=itend; ++it) {
733                 ex op = it->rest;
734                 if (op.info(info_flags::numeric)) {
735                         // series * const (special case, faster)
736                         ex f = power(op, it->coeff);
737                         acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
738                         continue;
739                 } else if (!is_ex_exactly_of_type(op, pseries))
740                         op = op.series(r, order, options);
741                 if (!it->coeff.is_equal(_ex1()))
742                         op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
743
744                 // Series multiplication
745                 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
746         }
747         return acc;
748 }
749
750
751 /** Compute the p-th power of a series.
752  *
753  *  @param p  power to compute
754  *  @param deg  truncation order of series calculation */
755 ex pseries::power_const(const numeric &p, int deg) const
756 {
757         // method:
758         // let A(x) be this series and for the time being let it start with a
759         // constant (later we'll generalize):
760         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
761         // We want to compute
762         //     C(x) = A(x)^p
763         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
764         // Taking the derivative on both sides and multiplying with A(x) one
765         // immediately arrives at
766         //     C'(x)*A(x) = p*C(x)*A'(x)
767         // Multiplying this out and comparing coefficients we get the recurrence
768         // formula
769         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
770         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
771         // which can easily be solved given the starting value c_0 = (a_0)^p.
772         // For the more general case where the leading coefficient of A(x) is not
773         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
774         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
775         // then of course x^(p*m) but the recurrence formula still holds.
776         
777         if (seq.size()==0) {
778                 // as a spacial case, handle the empty (zero) series honoring the
779                 // usual power laws such as implemented in power::eval()
780                 if (p.real().is_zero())
781                         throw (std::domain_error("pseries::power_const(): pow(0,I) is undefined"));
782                 else if (p.real().is_negative())
783                         throw (pole_error("pseries::power_const(): division by zero",1));
784                 else
785                         return *this;
786         }
787         
788         int ldeg = ldegree(var);
789         
790         // Compute coefficients of the powered series
791         exvector co;
792         co.reserve(deg);
793         co.push_back(power(coeff(var, ldeg), p));
794         bool all_sums_zero = true;
795         for (int i=1; i<deg; ++i) {
796                 ex sum = _ex0();
797                 for (int j=1; j<=i; ++j) {
798                         ex c = coeff(var, j + ldeg);
799                         if (is_order_function(c)) {
800                                 co.push_back(Order(_ex1()));
801                                 break;
802                         } else
803                                 sum += (p * j - (i - j)) * co[i - j] * c;
804                 }
805                 if (!sum.is_zero())
806                         all_sums_zero = false;
807                 co.push_back(sum / coeff(var, ldeg) / numeric(i));
808         }
809         
810         // Construct new series (of non-zero coefficients)
811         epvector new_seq;
812         bool higher_order = false;
813         for (int i=0; i<deg; ++i) {
814                 if (!co[i].is_zero())
815                         new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
816                 if (is_order_function(co[i])) {
817                         higher_order = true;
818                         break;
819                 }
820         }
821         if (!higher_order && !all_sums_zero)
822                 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
823         return pseries(relational(var,point), new_seq);
824 }
825
826
827 /** Return a new pseries object with the powers shifted by deg. */
828 pseries pseries::shift_exponents(int deg) const
829 {
830         epvector newseq(seq);
831         for (epvector::iterator i=newseq.begin(); i!=newseq.end(); ++i)
832                 i->coeff = i->coeff + deg;
833         return pseries(relational(var, point), newseq);
834 }
835
836
837 /** Implementation of ex::series() for powers. This performs Laurent expansion
838  *  of reciprocals of series at singularities.
839  *  @see ex::series */
840 ex power::series(const relational & r, int order, unsigned options) const
841 {
842         ex e;
843         if (!is_ex_exactly_of_type(basis, pseries)) {
844                 // Basis is not a series, may there be a singularity?
845                 bool must_expand_basis = false;
846                 try {
847                         basis.subs(r);
848                 } catch (pole_error) {
849                         must_expand_basis = true;
850                 }
851                 
852                 // Is the expression of type something^(-int)?
853                 if (!must_expand_basis && !exponent.info(info_flags::negint))
854                         return basic::series(r, order, options);
855                 
856                 // Is the expression of type 0^something?
857                 if (!must_expand_basis && !basis.subs(r).is_zero())
858                         return basic::series(r, order, options);
859                 
860                 // Singularity encountered, expand basis into series
861                 e = basis.series(r, order, options);
862         } else {
863                 // Basis is a series
864                 e = basis;
865         }
866         
867         // Power e
868         return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
869 }
870
871
872 /** Re-expansion of a pseries object. */
873 ex pseries::series(const relational & r, int order, unsigned options) const
874 {
875         const ex p = r.rhs();
876         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
877         const symbol &s = static_cast<symbol &>(*r.lhs().bp);
878         
879         if (var.is_equal(s) && point.is_equal(p)) {
880                 if (order > degree(s))
881                         return *this;
882                 else {
883                         epvector new_seq;
884                         epvector::const_iterator it = seq.begin(), itend = seq.end();
885                         while (it != itend) {
886                                 int o = ex_to_numeric(it->coeff).to_int();
887                                 if (o >= order) {
888                                         new_seq.push_back(expair(Order(_ex1()), o));
889                                         break;
890                                 }
891                                 new_seq.push_back(*it);
892                                 ++it;
893                         }
894                         return pseries(r, new_seq);
895                 }
896         } else
897                 return convert_to_poly().series(r, order, options);
898 }
899
900
901 /** Compute the truncated series expansion of an expression.
902  *  This function returns an expression containing an object of class pseries 
903  *  to represent the series. If the series does not terminate within the given
904  *  truncation order, the last term of the series will be an order term.
905  *
906  *  @param r  expansion relation, lhs holds variable and rhs holds point
907  *  @param order  truncation order of series calculations
908  *  @param options  of class series_options
909  *  @return an expression holding a pseries object */
910 ex ex::series(const ex & r, int order, unsigned options) const
911 {
912         GINAC_ASSERT(bp!=0);
913         ex e;
914         relational rel_;
915         
916         if (is_ex_exactly_of_type(r,relational))
917                 rel_ = ex_to_relational(r);
918         else if (is_ex_exactly_of_type(r,symbol))
919                 rel_ = relational(r,_ex0());
920         else
921                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
922         
923         try {
924                 e = bp->series(rel_, order, options);
925         } catch (std::exception &x) {
926                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
927         }
928         return e;
929 }
930
931 //////////
932 // static member variables
933 //////////
934
935 // protected
936
937 unsigned pseries::precedence = 38;  // for clarity just below add::precedence
938
939 } // namespace GiNaC