]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
- removed the compatiblity stuff for broken slink linkers.
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <stdexcept>
25
26 #include "pseries.h"
27 #include "add.h"
28 #include "inifcns.h"
29 #include "lst.h"
30 #include "mul.h"
31 #include "power.h"
32 #include "relational.h"
33 #include "symbol.h"
34 #include "archive.h"
35 #include "utils.h"
36 #include "debugmsg.h"
37
38 #ifndef NO_NAMESPACE_GINAC
39 namespace GiNaC {
40 #endif // ndef NO_NAMESPACE_GINAC
41
42 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
43
44 /*
45  *  Default constructor, destructor, copy constructor, assignment operator and helpers
46  */
47
48 pseries::pseries() : basic(TINFO_pseries)
49 {
50         debugmsg("pseries default constructor", LOGLEVEL_CONSTRUCT);
51 }
52
53 pseries::~pseries()
54 {
55         debugmsg("pseries destructor", LOGLEVEL_DESTRUCT);
56         destroy(false);
57 }
58
59 pseries::pseries(const pseries &other)
60 {
61         debugmsg("pseries copy constructor", LOGLEVEL_CONSTRUCT);
62         copy(other);
63 }
64
65 const pseries &pseries::operator=(const pseries & other)
66 {
67         debugmsg("pseries operator=", LOGLEVEL_ASSIGNMENT);
68         if (this != &other) {
69                 destroy(true);
70                 copy(other);
71         }
72         return *this;
73 }
74
75 void pseries::copy(const pseries &other)
76 {
77         inherited::copy(other);
78         seq = other.seq;
79         var = other.var;
80         point = other.point;
81 }
82
83 void pseries::destroy(bool call_parent)
84 {
85         if (call_parent)
86                 inherited::destroy(call_parent);
87 }
88
89
90 /*
91  *  Other constructors
92  */
93
94 /** Construct pseries from a vector of coefficients and powers.
95  *  expair.rest holds the coefficient, expair.coeff holds the power.
96  *  The powers must be integers (positive or negative) and in ascending order;
97  *  the last coefficient can be Order(_ex1()) to represent a truncated,
98  *  non-terminating series.
99  *
100  *  @param rel_  expansion variable and point (must hold a relational)
101  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
102  *  @return newly constructed pseries */
103 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
104 {
105         debugmsg("pseries constructor from ex,epvector", LOGLEVEL_CONSTRUCT);
106         GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational));
107         GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol));
108         point = rel_.rhs();
109         var = *static_cast<symbol *>(rel_.lhs().bp);
110 }
111
112
113 /*
114  *  Archiving
115  */
116
117 /** Construct object from archive_node. */
118 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
119 {
120         debugmsg("pseries constructor from archive_node", LOGLEVEL_CONSTRUCT);
121         for (unsigned int i=0; true; ++i) {
122                 ex rest;
123                 ex coeff;
124                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
125                         seq.push_back(expair(rest, coeff));
126                 else
127                         break;
128         }
129         n.find_ex("var", var, sym_lst);
130         n.find_ex("point", point, sym_lst);
131 }
132
133 /** Unarchive the object. */
134 ex pseries::unarchive(const archive_node &n, const lst &sym_lst)
135 {
136         return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated);
137 }
138
139 /** Archive the object. */
140 void pseries::archive(archive_node &n) const
141 {
142         inherited::archive(n);
143         epvector::const_iterator i = seq.begin(), iend = seq.end();
144         while (i != iend) {
145                 n.add_ex("coeff", i->rest);
146                 n.add_ex("power", i->coeff);
147                 ++i;
148         }
149         n.add_ex("var", var);
150         n.add_ex("point", point);
151 }
152
153 //////////
154 // functions overriding virtual functions from bases classes
155 //////////
156
157 basic *pseries::duplicate() const
158 {
159         debugmsg("pseries duplicate", LOGLEVEL_DUPLICATE);
160         return new pseries(*this);
161 }
162
163 void pseries::print(std::ostream &os, unsigned upper_precedence) const
164 {
165         debugmsg("pseries print", LOGLEVEL_PRINT);
166         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
167                 // omit zero terms
168                 if (i->rest.is_zero())
169                         continue;
170                 // print a sign, if needed
171                 if (i!=seq.begin())
172                         os << '+';
173                 if (!is_order_function(i->rest)) {
174                         // print 'rest', i.e. the expansion coefficient
175                         if (i->rest.info(info_flags::numeric) &&
176                                 i->rest.info(info_flags::positive)) {
177                                 os << i->rest;
178                         } else
179                                 os << "(" << i->rest << ')';
180                         // print 'coeff', something like (x-1)^42
181                         if (!i->coeff.is_zero()) {
182                                 os << '*';
183                                 if (!point.is_zero())
184                                         os << '(' << var-point << ')';
185                                 else
186                                         os << var;
187                                 if (i->coeff.compare(_ex1())) {
188                                         os << '^';
189                                         if (i->coeff.info(info_flags::negative))
190                                                 os << '(' << i->coeff << ')';
191                                         else
192                                                 os << i->coeff;
193                                 }
194                         }
195                 } else {
196                         os << Order(power(var-point,i->coeff));
197                 }
198         }
199 }
200
201
202 void pseries::printraw(std::ostream &os) const
203 {
204         debugmsg("pseries printraw", LOGLEVEL_PRINT);
205         os << "pseries(" << var << ";" << point << ";";
206         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
207                 os << "(" << (*i).rest << "," << (*i).coeff << "),";
208         }
209         os << ")";
210 }
211
212
213 void pseries::printtree(std::ostream & os, unsigned indent) const
214 {
215         debugmsg("pseries printtree",LOGLEVEL_PRINT);
216         os << std::string(indent,' ') << "pseries " 
217            << ", hash=" << hashvalue
218            << " (0x" << std::hex << hashvalue << std::dec << ")"
219            << ", flags=" << flags << std::endl;
220         for (unsigned i=0; i<seq.size(); ++i) {
221                 seq[i].rest.printtree(os,indent+delta_indent);
222                 seq[i].coeff.printtree(os,indent+delta_indent);
223                 if (i!=seq.size()-1)
224                         os << std::string(indent+delta_indent,' ') << "-----" << std::endl;
225         }
226         var.printtree(os, indent+delta_indent);
227         point.printtree(os, indent+delta_indent);
228 }
229
230 /** Return the number of operands including a possible order term. */
231 unsigned pseries::nops(void) const
232 {
233         return seq.size();
234 }
235
236
237 /** Return the ith term in the series when represented as a sum. */
238 ex pseries::op(int i) const
239 {
240         if (i < 0 || unsigned(i) >= seq.size())
241                 throw (std::out_of_range("op() out of range"));
242         return seq[i].rest * power(var - point, seq[i].coeff);
243 }
244
245
246 ex &pseries::let_op(int i)
247 {
248         throw (std::logic_error("let_op not defined for pseries"));
249 }
250
251
252 /** Return degree of highest power of the series.  This is usually the exponent
253  *  of the Order term.  If s is not the expansion variable of the series, the
254  *  series is examined termwise. */
255 int pseries::degree(const symbol &s) const
256 {
257         if (var.is_equal(s)) {
258                 // Return last exponent
259                 if (seq.size())
260                         return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
261                 else
262                         return 0;
263         } else {
264                 epvector::const_iterator it = seq.begin(), itend = seq.end();
265                 if (it == itend)
266                         return 0;
267                 int max_pow = INT_MIN;
268                 while (it != itend) {
269                         int pow = it->rest.degree(s);
270                         if (pow > max_pow)
271                                 max_pow = pow;
272                         ++it;
273                 }
274                 return max_pow;
275         }
276 }
277
278 /** Return degree of lowest power of the series.  This is usually the exponent
279  *  of the leading term.  If s is not the expansion variable of the series, the
280  *  series is examined termwise.  If s is the expansion variable but the
281  *  expansion point is not zero the series is not expanded to find the degree.
282  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
283 int pseries::ldegree(const symbol &s) const
284 {
285         if (var.is_equal(s)) {
286                 // Return first exponent
287                 if (seq.size())
288                         return ex_to_numeric((*(seq.begin())).coeff).to_int();
289                 else
290                         return 0;
291         } else {
292                 epvector::const_iterator it = seq.begin(), itend = seq.end();
293                 if (it == itend)
294                         return 0;
295                 int min_pow = INT_MAX;
296                 while (it != itend) {
297                         int pow = it->rest.ldegree(s);
298                         if (pow < min_pow)
299                                 min_pow = pow;
300                         ++it;
301                 }
302                 return min_pow;
303         }
304 }
305
306 ex pseries::coeff(const symbol &s, int n) const
307 {
308         if (var.is_equal(s)) {
309                 if (seq.size() == 0)
310                         return _ex0();
311                 
312                 // Binary search in sequence for given power
313                 numeric looking_for = numeric(n);
314                 int lo = 0, hi = seq.size() - 1;
315                 while (lo <= hi) {
316                         int mid = (lo + hi) / 2;
317                         GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric));
318                         int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for);
319                         switch (cmp) {
320                                 case -1:
321                                         lo = mid + 1;
322                                         break;
323                                 case 0:
324                                         return seq[mid].rest;
325                                 case 1:
326                                         hi = mid - 1;
327                                         break;
328                                 default:
329                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
330                         }
331                 }
332                 return _ex0();
333         } else
334                 return convert_to_poly().coeff(s, n);
335 }
336
337
338 ex pseries::collect(const symbol &s) const
339 {
340         return *this;
341 }
342
343
344 /** Evaluate coefficients. */
345 ex pseries::eval(int level) const
346 {
347         if (level == 1)
348                 return this->hold();
349         
350         if (level == -max_recursion_level)
351                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
352         
353         // Construct a new series with evaluated coefficients
354         epvector new_seq;
355         new_seq.reserve(seq.size());
356         epvector::const_iterator it = seq.begin(), itend = seq.end();
357         while (it != itend) {
358                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
359                 ++it;
360         }
361         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
362 }
363
364
365 /** Evaluate coefficients numerically. */
366 ex pseries::evalf(int level) const
367 {
368         if (level == 1)
369                 return *this;
370         
371         if (level == -max_recursion_level)
372                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
373         
374         // Construct a new series with evaluated coefficients
375         epvector new_seq;
376         new_seq.reserve(seq.size());
377         epvector::const_iterator it = seq.begin(), itend = seq.end();
378         while (it != itend) {
379                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
380                 ++it;
381         }
382         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
383 }
384
385
386 ex pseries::subs(const lst & ls, const lst & lr) const
387 {
388         // If expansion variable is being substituted, convert the series to a
389         // polynomial and do the substitution there because the result might
390         // no longer be a power series
391         if (ls.has(var))
392                 return convert_to_poly(true).subs(ls, lr);
393         
394         // Otherwise construct a new series with substituted coefficients and
395         // expansion point
396         epvector newseq;
397         newseq.reserve(seq.size());
398         epvector::const_iterator it = seq.begin(), itend = seq.end();
399         while (it != itend) {
400                 newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
401                 ++it;
402         }
403         return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated);
404 }
405
406
407 /** Implementation of ex::expand() for a power series.  It expands all the
408  *  terms individually and returns the resulting series as a new pseries.
409  *  @see ex::diff */
410 ex pseries::expand(unsigned options) const
411 {
412         epvector newseq;
413         newseq.reserve(seq.size());
414         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i)
415                 newseq.push_back(expair(i->rest.expand(), i->coeff));
416         return (new pseries(relational(var,point), newseq))
417                 ->setflag(status_flags::dynallocated | status_flags::expanded);
418 }
419
420
421 /** Implementation of ex::diff() for a power series.  It treats the series as a
422  *  polynomial.
423  *  @see ex::diff */
424 ex pseries::derivative(const symbol & s) const
425 {
426         if (s == var) {
427                 epvector new_seq;
428                 epvector::const_iterator it = seq.begin(), itend = seq.end();
429                 
430                 // FIXME: coeff might depend on var
431                 while (it != itend) {
432                         if (is_order_function(it->rest)) {
433                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
434                         } else {
435                                 ex c = it->rest * it->coeff;
436                                 if (!c.is_zero())
437                                         new_seq.push_back(expair(c, it->coeff - 1));
438                         }
439                         ++it;
440                 }
441                 return pseries(relational(var,point), new_seq);
442         } else {
443                 return *this;
444         }
445 }
446
447
448 /*
449  *  Construct ordinary polynomial out of series
450  */
451
452 /** Convert a pseries object to an ordinary polynomial.
453  *
454  *  @param no_order flag: discard higher order terms */
455 ex pseries::convert_to_poly(bool no_order) const
456 {
457         ex e;
458         epvector::const_iterator it = seq.begin(), itend = seq.end();
459         
460         while (it != itend) {
461                 if (is_order_function(it->rest)) {
462                         if (!no_order)
463                                 e += Order(power(var - point, it->coeff));
464                 } else
465                         e += it->rest * power(var - point, it->coeff);
466                 ++it;
467         }
468         return e;
469 }
470
471 /** Returns true if there is no order term, i.e. the series terminates and
472  *  false otherwise. */
473 bool pseries::is_terminating(void) const
474 {
475         return seq.size() == 0 || !is_order_function((seq.end()-1)->rest);
476 }
477
478
479 /*
480  *  Implementation of series expansion
481  */
482
483 /** Default implementation of ex::series(). This performs Taylor expansion.
484  *  @see ex::series */
485 ex basic::series(const relational & r, int order, unsigned options) const
486 {
487         epvector seq;
488         numeric fac(1);
489         ex deriv = *this;
490         ex coeff = deriv.subs(r);
491         const symbol *s = static_cast<symbol *>(r.lhs().bp);
492         
493         if (!coeff.is_zero())
494                 seq.push_back(expair(coeff, numeric(0)));
495         
496         int n;
497         for (n=1; n<order; ++n) {
498                 fac = fac.mul(numeric(n));
499                 deriv = deriv.diff(*s).expand();
500                 if (deriv.is_zero()) {
501                         // Series terminates
502                         return pseries(r, seq);
503                 }
504                 coeff = deriv.subs(r);
505                 if (!coeff.is_zero())
506                         seq.push_back(expair(fac.inverse() * coeff, numeric(n)));
507         }
508         
509         // Higher-order terms, if present
510         deriv = deriv.diff(*s);
511         if (!deriv.expand().is_zero())
512                 seq.push_back(expair(Order(_ex1()), numeric(n)));
513         return pseries(r, seq);
514 }
515
516
517 /** Implementation of ex::series() for symbols.
518  *  @see ex::series */
519 ex symbol::series(const relational & r, int order, unsigned options) const
520 {
521         epvector seq;
522         const ex point = r.rhs();
523         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
524         const symbol *s = static_cast<symbol *>(r.lhs().bp);
525         
526         if (this->is_equal(*s)) {
527                 if (order > 0 && !point.is_zero())
528                         seq.push_back(expair(point, _ex0()));
529                 if (order > 1)
530                         seq.push_back(expair(_ex1(), _ex1()));
531                 else
532                         seq.push_back(expair(Order(_ex1()), numeric(order)));
533         } else
534                 seq.push_back(expair(*this, _ex0()));
535         return pseries(r, seq);
536 }
537
538
539 /** Add one series object to another, producing a pseries object that
540  *  represents the sum.
541  *
542  *  @param other  pseries object to add with
543  *  @return the sum as a pseries */
544 ex pseries::add_series(const pseries &other) const
545 {
546         // Adding two series with different variables or expansion points
547         // results in an empty (constant) series 
548         if (!is_compatible_to(other)) {
549                 epvector nul;
550                 nul.push_back(expair(Order(_ex1()), _ex0()));
551                 return pseries(relational(var,point), nul);
552         }
553         
554         // Series addition
555         epvector new_seq;
556         epvector::const_iterator a = seq.begin();
557         epvector::const_iterator b = other.seq.begin();
558         epvector::const_iterator a_end = seq.end();
559         epvector::const_iterator b_end = other.seq.end();
560         int pow_a = INT_MAX, pow_b = INT_MAX;
561         for (;;) {
562                 // If a is empty, fill up with elements from b and stop
563                 if (a == a_end) {
564                         while (b != b_end) {
565                                 new_seq.push_back(*b);
566                                 ++b;
567                         }
568                         break;
569                 } else
570                         pow_a = ex_to_numeric((*a).coeff).to_int();
571                 
572                 // If b is empty, fill up with elements from a and stop
573                 if (b == b_end) {
574                         while (a != a_end) {
575                                 new_seq.push_back(*a);
576                                 ++a;
577                         }
578                         break;
579                 } else
580                         pow_b = ex_to_numeric((*b).coeff).to_int();
581                 
582                 // a and b are non-empty, compare powers
583                 if (pow_a < pow_b) {
584                         // a has lesser power, get coefficient from a
585                         new_seq.push_back(*a);
586                         if (is_order_function((*a).rest))
587                                 break;
588                         ++a;
589                 } else if (pow_b < pow_a) {
590                         // b has lesser power, get coefficient from b
591                         new_seq.push_back(*b);
592                         if (is_order_function((*b).rest))
593                                 break;
594                         ++b;
595                 } else {
596                         // Add coefficient of a and b
597                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
598                                 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
599                                 break;  // Order term ends the sequence
600                         } else {
601                                 ex sum = (*a).rest + (*b).rest;
602                                 if (!(sum.is_zero()))
603                                         new_seq.push_back(expair(sum, numeric(pow_a)));
604                                 ++a;
605                                 ++b;
606                         }
607                 }
608         }
609         return pseries(relational(var,point), new_seq);
610 }
611
612
613 /** Implementation of ex::series() for sums. This performs series addition when
614  *  adding pseries objects.
615  *  @see ex::series */
616 ex add::series(const relational & r, int order, unsigned options) const
617 {
618         ex acc; // Series accumulator
619         
620         // Get first term from overall_coeff
621         acc = overall_coeff.series(r, order, options);
622         
623         // Add remaining terms
624         epvector::const_iterator it = seq.begin();
625         epvector::const_iterator itend = seq.end();
626         for (; it!=itend; ++it) {
627                 ex op;
628                 if (is_ex_exactly_of_type(it->rest, pseries))
629                         op = it->rest;
630                 else
631                         op = it->rest.series(r, order, options);
632                 if (!it->coeff.is_equal(_ex1()))
633                         op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
634                 
635                 // Series addition
636                 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
637         }
638         return acc;
639 }
640
641
642 /** Multiply a pseries object with a numeric constant, producing a pseries
643  *  object that represents the product.
644  *
645  *  @param other  constant to multiply with
646  *  @return the product as a pseries */
647 ex pseries::mul_const(const numeric &other) const
648 {
649         epvector new_seq;
650         new_seq.reserve(seq.size());
651         
652         epvector::const_iterator it = seq.begin(), itend = seq.end();
653         while (it != itend) {
654                 if (!is_order_function(it->rest))
655                         new_seq.push_back(expair(it->rest * other, it->coeff));
656                 else
657                         new_seq.push_back(*it);
658                 ++it;
659         }
660         return pseries(relational(var,point), new_seq);
661 }
662
663
664 /** Multiply one pseries object to another, producing a pseries object that
665  *  represents the product.
666  *
667  *  @param other  pseries object to multiply with
668  *  @return the product as a pseries */
669 ex pseries::mul_series(const pseries &other) const
670 {
671         // Multiplying two series with different variables or expansion points
672         // results in an empty (constant) series 
673         if (!is_compatible_to(other)) {
674                 epvector nul;
675                 nul.push_back(expair(Order(_ex1()), _ex0()));
676                 return pseries(relational(var,point), nul);
677         }
678         
679         // Series multiplication
680         epvector new_seq;
681         
682         const symbol *s = static_cast<symbol *>(var.bp);
683         int a_max = degree(*s);
684         int b_max = other.degree(*s);
685         int a_min = ldegree(*s);
686         int b_min = other.ldegree(*s);
687         int cdeg_min = a_min + b_min;
688         int cdeg_max = a_max + b_max;
689         
690         int higher_order_a = INT_MAX;
691         int higher_order_b = INT_MAX;
692         if (is_order_function(coeff(*s, a_max)))
693                 higher_order_a = a_max + b_min;
694         if (is_order_function(other.coeff(*s, b_max)))
695                 higher_order_b = b_max + a_min;
696         int higher_order_c = std::min(higher_order_a, higher_order_b);
697         if (cdeg_max >= higher_order_c)
698                 cdeg_max = higher_order_c - 1;
699         
700         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
701                 ex co = _ex0();
702                 // c(i)=a(0)b(i)+...+a(i)b(0)
703                 for (int i=a_min; cdeg-i>=b_min; ++i) {
704                         ex a_coeff = coeff(*s, i);
705                         ex b_coeff = other.coeff(*s, cdeg-i);
706                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
707                                 co += a_coeff * b_coeff;
708                 }
709                 if (!co.is_zero())
710                         new_seq.push_back(expair(co, numeric(cdeg)));
711         }
712         if (higher_order_c < INT_MAX)
713                 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
714         return pseries(relational(var,point), new_seq);
715 }
716
717
718 /** Implementation of ex::series() for product. This performs series
719  *  multiplication when multiplying series.
720  *  @see ex::series */
721 ex mul::series(const relational & r, int order, unsigned options) const
722 {
723         ex acc; // Series accumulator
724         
725         // Get first term from overall_coeff
726         acc = overall_coeff.series(r, order, options);
727         
728         // Multiply with remaining terms
729         epvector::const_iterator it = seq.begin();
730         epvector::const_iterator itend = seq.end();
731         for (; it!=itend; ++it) {
732                 ex op = it->rest;
733                 if (op.info(info_flags::numeric)) {
734                         // series * const (special case, faster)
735                         ex f = power(op, it->coeff);
736                         acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
737                         continue;
738                 } else if (!is_ex_exactly_of_type(op, pseries))
739                         op = op.series(r, order, options);
740                 if (!it->coeff.is_equal(_ex1()))
741                         op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
742
743                 // Series multiplication
744                 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
745         }
746         return acc;
747 }
748
749
750 /** Compute the p-th power of a series.
751  *
752  *  @param p  power to compute
753  *  @param deg  truncation order of series calculation */
754 ex pseries::power_const(const numeric &p, int deg) const
755 {
756         int i;
757         const symbol *s = static_cast<symbol *>(var.bp);
758         int ldeg = ldegree(*s);
759         
760         // Calculate coefficients of powered series
761         exvector co;
762         co.reserve(deg);
763         ex co0;
764         co.push_back(co0 = power(coeff(*s, ldeg), p));
765         bool all_sums_zero = true;
766         for (i=1; i<deg; ++i) {
767                 ex sum = _ex0();
768                 for (int j=1; j<=i; ++j) {
769                         ex c = coeff(*s, j + ldeg);
770                         if (is_order_function(c)) {
771                                 co.push_back(Order(_ex1()));
772                                 break;
773                         } else
774                                 sum += (p * j - (i - j)) * co[i - j] * c;
775                 }
776                 if (!sum.is_zero())
777                         all_sums_zero = false;
778                 co.push_back(co0 * sum / numeric(i));
779         }
780         
781         // Construct new series (of non-zero coefficients)
782         epvector new_seq;
783         bool higher_order = false;
784         for (i=0; i<deg; ++i) {
785                 if (!co[i].is_zero())
786                         new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
787                 if (is_order_function(co[i])) {
788                         higher_order = true;
789                         break;
790                 }
791         }
792         if (!higher_order && !all_sums_zero)
793                 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
794         return pseries(relational(var,point), new_seq);
795 }
796
797
798 /** Return a new pseries object with the powers shifted by deg. */
799 pseries pseries::shift_exponents(int deg) const
800 {
801         epvector newseq(seq);
802         for (epvector::iterator i=newseq.begin(); i!=newseq.end(); ++i)
803                 i->coeff = i->coeff + deg;
804         return pseries(relational(var, point), newseq);
805 }
806
807
808 /** Implementation of ex::series() for powers. This performs Laurent expansion
809  *  of reciprocals of series at singularities.
810  *  @see ex::series */
811 ex power::series(const relational & r, int order, unsigned options) const
812 {
813         ex e;
814         if (!is_ex_exactly_of_type(basis, pseries)) {
815                 // Basis is not a series, may there be a singulary?
816                 if (!exponent.info(info_flags::negint))
817                         return basic::series(r, order, options);
818                 
819                 // Expression is of type something^(-int), check for singularity
820                 if (!basis.subs(r).is_zero())
821                         return basic::series(r, order, options);
822                 
823                 // Singularity encountered, expand basis into series
824                 e = basis.series(r, order, options);
825         } else {
826                 // Basis is a series
827                 e = basis;
828         }
829         
830         // Power e
831         return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
832 }
833
834
835 /** Re-expansion of a pseries object. */
836 ex pseries::series(const relational & r, int order, unsigned options) const
837 {
838         const ex p = r.rhs();
839         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
840         const symbol *s = static_cast<symbol *>(r.lhs().bp);
841         
842         if (var.is_equal(*s) && point.is_equal(p)) {
843                 if (order > degree(*s))
844                         return *this;
845                 else {
846                         epvector new_seq;
847                         epvector::const_iterator it = seq.begin(), itend = seq.end();
848                         while (it != itend) {
849                                 int o = ex_to_numeric(it->coeff).to_int();
850                                 if (o >= order) {
851                                         new_seq.push_back(expair(Order(_ex1()), o));
852                                         break;
853                                 }
854                                 new_seq.push_back(*it);
855                                 ++it;
856                         }
857                         return pseries(r, new_seq);
858                 }
859         } else
860                 return convert_to_poly().series(r, order, options);
861 }
862
863
864 /** Compute the truncated series expansion of an expression.
865  *  This function returns an expression containing an object of class pseries 
866  *  to represent the series. If the series does not terminate within the given
867  *  truncation order, the last term of the series will be an order term.
868  *
869  *  @param r  expansion relation, lhs holds variable and rhs holds point
870  *  @param order  truncation order of series calculations
871  *  @param options  of class series_options
872  *  @return an expression holding a pseries object */
873 ex ex::series(const ex & r, int order, unsigned options) const
874 {
875         GINAC_ASSERT(bp!=0);
876         ex e;
877         relational rel_;
878         
879         if (is_ex_exactly_of_type(r,relational))
880                 rel_ = ex_to_relational(r);
881         else if (is_ex_exactly_of_type(r,symbol))
882                 rel_ = relational(r,_ex0());
883         else
884                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
885         
886         try {
887                 e = bp->series(rel_, order, options);
888         } catch (std::exception &x) {
889                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
890         }
891         return e;
892 }
893
894
895 // Global constants
896 const pseries some_pseries;
897 const std::type_info & typeid_pseries = typeid(some_pseries);
898
899 #ifndef NO_NAMESPACE_GINAC
900 } // namespace GiNaC
901 #endif // ndef NO_NAMESPACE_GINAC