]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
* Remove timing for -O0, people really shouldn't use it.
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <iostream>
25 #include <stdexcept>
26
27 #include "pseries.h"
28 #include "add.h"
29 #include "inifcns.h" // for Order function
30 #include "lst.h"
31 #include "mul.h"
32 #include "power.h"
33 #include "relational.h"
34 #include "symbol.h"
35 #include "print.h"
36 #include "archive.h"
37 #include "utils.h"
38
39 namespace GiNaC {
40
41 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
42
43
44 /*
45  *  Default ctor, dtor, copy ctor, assignment operator and helpers
46  */
47
48 pseries::pseries() : inherited(TINFO_pseries) { }
49
50 void pseries::copy(const pseries &other)
51 {
52         inherited::copy(other);
53         seq = other.seq;
54         var = other.var;
55         point = other.point;
56 }
57
58 DEFAULT_DESTROY(pseries)
59
60
61 /*
62  *  Other ctors
63  */
64
65 /** Construct pseries from a vector of coefficients and powers.
66  *  expair.rest holds the coefficient, expair.coeff holds the power.
67  *  The powers must be integers (positive or negative) and in ascending order;
68  *  the last coefficient can be Order(_ex1) to represent a truncated,
69  *  non-terminating series.
70  *
71  *  @param rel_  expansion variable and point (must hold a relational)
72  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
73  *  @return newly constructed pseries */
74 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
75 {
76         GINAC_ASSERT(is_exactly_a<relational>(rel_));
77         GINAC_ASSERT(is_exactly_a<symbol>(rel_.lhs()));
78         point = rel_.rhs();
79         var = rel_.lhs();
80 }
81
82
83 /*
84  *  Archiving
85  */
86
87 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
88 {
89         for (unsigned int i=0; true; ++i) {
90                 ex rest;
91                 ex coeff;
92                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
93                         seq.push_back(expair(rest, coeff));
94                 else
95                         break;
96         }
97         n.find_ex("var", var, sym_lst);
98         n.find_ex("point", point, sym_lst);
99 }
100
101 void pseries::archive(archive_node &n) const
102 {
103         inherited::archive(n);
104         epvector::const_iterator i = seq.begin(), iend = seq.end();
105         while (i != iend) {
106                 n.add_ex("coeff", i->rest);
107                 n.add_ex("power", i->coeff);
108                 ++i;
109         }
110         n.add_ex("var", var);
111         n.add_ex("point", point);
112 }
113
114 DEFAULT_UNARCHIVE(pseries)
115
116 //////////
117 // functions overriding virtual functions from base classes
118 //////////
119
120 void pseries::print(const print_context & c, unsigned level) const
121 {
122         if (is_a<print_tree>(c)) {
123
124                 c.s << std::string(level, ' ') << class_name()
125                     << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
126                     << std::endl;
127                 unsigned delta_indent = static_cast<const print_tree &>(c).delta_indent;
128                 unsigned num = seq.size();
129                 for (unsigned i=0; i<num; ++i) {
130                         seq[i].rest.print(c, level + delta_indent);
131                         seq[i].coeff.print(c, level + delta_indent);
132                         c.s << std::string(level + delta_indent, ' ') << "-----" << std::endl;
133                 }
134                 var.print(c, level + delta_indent);
135                 point.print(c, level + delta_indent);
136
137         } else {
138
139                 if (precedence() <= level)
140                         c.s << "(";
141                 
142                 std::string par_open = is_a<print_latex>(c) ? "{(" : "(";
143                 std::string par_close = is_a<print_latex>(c) ? ")}" : ")";
144                 
145                 // objects of type pseries must not have any zero entries, so the
146                 // trivial (zero) pseries needs a special treatment here:
147                 if (seq.empty())
148                         c.s << '0';
149                 epvector::const_iterator i = seq.begin(), end = seq.end();
150                 while (i != end) {
151                         // print a sign, if needed
152                         if (i != seq.begin())
153                                 c.s << '+';
154                         if (!is_order_function(i->rest)) {
155                                 // print 'rest', i.e. the expansion coefficient
156                                 if (i->rest.info(info_flags::numeric) &&
157                                         i->rest.info(info_flags::positive)) {
158                                         i->rest.print(c);
159                                 } else {
160                                         c.s << par_open;
161                                         i->rest.print(c);
162                                         c.s << par_close;
163                                 }
164                                 // print 'coeff', something like (x-1)^42
165                                 if (!i->coeff.is_zero()) {
166                                         if (is_a<print_latex>(c))
167                                                 c.s << ' ';
168                                         else
169                                                 c.s << '*';
170                                         if (!point.is_zero()) {
171                                                 c.s << par_open;
172                                                 (var-point).print(c);
173                                                 c.s << par_close;
174                                         } else
175                                                 var.print(c);
176                                         if (i->coeff.compare(_ex1)) {
177                                                 c.s << '^';
178                                                 if (i->coeff.info(info_flags::negative)) {
179                                                         c.s << par_open;
180                                                         i->coeff.print(c);
181                                                         c.s << par_close;
182                                                 } else {
183                                                         if (is_a<print_latex>(c)) {
184                                                                 c.s << '{';
185                                                                 i->coeff.print(c);
186                                                                 c.s << '}';
187                                                         } else
188                                                                 i->coeff.print(c);
189                                                 }
190                                         }
191                                 }
192                         } else
193                                 Order(power(var-point,i->coeff)).print(c);
194                         ++i;
195                 }
196
197                 if (precedence() <= level)
198                         c.s << ")";
199         }
200 }
201
202 int pseries::compare_same_type(const basic & other) const
203 {
204         GINAC_ASSERT(is_a<pseries>(other));
205         const pseries &o = static_cast<const pseries &>(other);
206         
207         // first compare the lengths of the series...
208         if (seq.size()>o.seq.size())
209                 return 1;
210         if (seq.size()<o.seq.size())
211                 return -1;
212         
213         // ...then the expansion point...
214         int cmpval = var.compare(o.var);
215         if (cmpval)
216                 return cmpval;
217         cmpval = point.compare(o.point);
218         if (cmpval)
219                 return cmpval;
220         
221         // ...and if that failed the individual elements
222         epvector::const_iterator it = seq.begin(), o_it = o.seq.begin();
223         while (it!=seq.end() && o_it!=o.seq.end()) {
224                 cmpval = it->compare(*o_it);
225                 if (cmpval)
226                         return cmpval;
227                 ++it;
228                 ++o_it;
229         }
230
231         // so they are equal.
232         return 0;
233 }
234
235 /** Return the number of operands including a possible order term. */
236 unsigned pseries::nops(void) const
237 {
238         return seq.size();
239 }
240
241 /** Return the ith term in the series when represented as a sum. */
242 ex pseries::op(int i) const
243 {
244         if (i < 0 || unsigned(i) >= seq.size())
245                 throw (std::out_of_range("op() out of range"));
246         return seq[i].rest * power(var - point, seq[i].coeff);
247 }
248
249 ex &pseries::let_op(int i)
250 {
251         throw (std::logic_error("let_op not defined for pseries"));
252 }
253
254 /** Return degree of highest power of the series.  This is usually the exponent
255  *  of the Order term.  If s is not the expansion variable of the series, the
256  *  series is examined termwise. */
257 int pseries::degree(const ex &s) const
258 {
259         if (var.is_equal(s)) {
260                 // Return last exponent
261                 if (seq.size())
262                         return ex_to<numeric>((seq.end()-1)->coeff).to_int();
263                 else
264                         return 0;
265         } else {
266                 epvector::const_iterator it = seq.begin(), itend = seq.end();
267                 if (it == itend)
268                         return 0;
269                 int max_pow = INT_MIN;
270                 while (it != itend) {
271                         int pow = it->rest.degree(s);
272                         if (pow > max_pow)
273                                 max_pow = pow;
274                         ++it;
275                 }
276                 return max_pow;
277         }
278 }
279
280 /** Return degree of lowest power of the series.  This is usually the exponent
281  *  of the leading term.  If s is not the expansion variable of the series, the
282  *  series is examined termwise.  If s is the expansion variable but the
283  *  expansion point is not zero the series is not expanded to find the degree.
284  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
285 int pseries::ldegree(const ex &s) const
286 {
287         if (var.is_equal(s)) {
288                 // Return first exponent
289                 if (seq.size())
290                         return ex_to<numeric>((seq.begin())->coeff).to_int();
291                 else
292                         return 0;
293         } else {
294                 epvector::const_iterator it = seq.begin(), itend = seq.end();
295                 if (it == itend)
296                         return 0;
297                 int min_pow = INT_MAX;
298                 while (it != itend) {
299                         int pow = it->rest.ldegree(s);
300                         if (pow < min_pow)
301                                 min_pow = pow;
302                         ++it;
303                 }
304                 return min_pow;
305         }
306 }
307
308 /** Return coefficient of degree n in power series if s is the expansion
309  *  variable.  If the expansion point is nonzero, by definition the n=1
310  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
311  *  the expansion took place in the s in the first place).
312  *  If s is not the expansion variable, an attempt is made to convert the
313  *  series to a polynomial and return the corresponding coefficient from
314  *  there. */
315 ex pseries::coeff(const ex &s, int n) const
316 {
317         if (var.is_equal(s)) {
318                 if (seq.empty())
319                         return _ex0;
320                 
321                 // Binary search in sequence for given power
322                 numeric looking_for = numeric(n);
323                 int lo = 0, hi = seq.size() - 1;
324                 while (lo <= hi) {
325                         int mid = (lo + hi) / 2;
326                         GINAC_ASSERT(is_exactly_a<numeric>(seq[mid].coeff));
327                         int cmp = ex_to<numeric>(seq[mid].coeff).compare(looking_for);
328                         switch (cmp) {
329                                 case -1:
330                                         lo = mid + 1;
331                                         break;
332                                 case 0:
333                                         return seq[mid].rest;
334                                 case 1:
335                                         hi = mid - 1;
336                                         break;
337                                 default:
338                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
339                         }
340                 }
341                 return _ex0;
342         } else
343                 return convert_to_poly().coeff(s, n);
344 }
345
346 /** Does nothing. */
347 ex pseries::collect(const ex &s, bool distributed) const
348 {
349         return *this;
350 }
351
352 /** Perform coefficient-wise automatic term rewriting rules in this class. */
353 ex pseries::eval(int level) const
354 {
355         if (level == 1)
356                 return this->hold();
357         
358         if (level == -max_recursion_level)
359                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
360         
361         // Construct a new series with evaluated coefficients
362         epvector new_seq;
363         new_seq.reserve(seq.size());
364         epvector::const_iterator it = seq.begin(), itend = seq.end();
365         while (it != itend) {
366                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
367                 ++it;
368         }
369         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
370 }
371
372 /** Evaluate coefficients numerically. */
373 ex pseries::evalf(int level) const
374 {
375         if (level == 1)
376                 return *this;
377         
378         if (level == -max_recursion_level)
379                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
380         
381         // Construct a new series with evaluated coefficients
382         epvector new_seq;
383         new_seq.reserve(seq.size());
384         epvector::const_iterator it = seq.begin(), itend = seq.end();
385         while (it != itend) {
386                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
387                 ++it;
388         }
389         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
390 }
391
392 ex pseries::subs(const lst & ls, const lst & lr, bool no_pattern) const
393 {
394         // If expansion variable is being substituted, convert the series to a
395         // polynomial and do the substitution there because the result might
396         // no longer be a power series
397         if (ls.has(var))
398                 return convert_to_poly(true).subs(ls, lr, no_pattern);
399         
400         // Otherwise construct a new series with substituted coefficients and
401         // expansion point
402         epvector newseq;
403         newseq.reserve(seq.size());
404         epvector::const_iterator it = seq.begin(), itend = seq.end();
405         while (it != itend) {
406                 newseq.push_back(expair(it->rest.subs(ls, lr, no_pattern), it->coeff));
407                 ++it;
408         }
409         return (new pseries(relational(var,point.subs(ls, lr, no_pattern)), newseq))->setflag(status_flags::dynallocated);
410 }
411
412 /** Implementation of ex::expand() for a power series.  It expands all the
413  *  terms individually and returns the resulting series as a new pseries. */
414 ex pseries::expand(unsigned options) const
415 {
416         epvector newseq;
417         epvector::const_iterator i = seq.begin(), end = seq.end();
418         while (i != end) {
419                 ex restexp = i->rest.expand();
420                 if (!restexp.is_zero())
421                         newseq.push_back(expair(restexp, i->coeff));
422                 ++i;
423         }
424         return (new pseries(relational(var,point), newseq))
425                 ->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
426 }
427
428 /** Implementation of ex::diff() for a power series.  It treats the series as a
429  *  polynomial.
430  *  @see ex::diff */
431 ex pseries::derivative(const symbol & s) const
432 {
433         if (s == var) {
434                 epvector new_seq;
435                 epvector::const_iterator it = seq.begin(), itend = seq.end();
436                 
437                 // FIXME: coeff might depend on var
438                 while (it != itend) {
439                         if (is_order_function(it->rest)) {
440                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
441                         } else {
442                                 ex c = it->rest * it->coeff;
443                                 if (!c.is_zero())
444                                         new_seq.push_back(expair(c, it->coeff - 1));
445                         }
446                         ++it;
447                 }
448                 return pseries(relational(var,point), new_seq);
449         } else {
450                 return *this;
451         }
452 }
453
454 ex pseries::convert_to_poly(bool no_order) const
455 {
456         ex e;
457         epvector::const_iterator it = seq.begin(), itend = seq.end();
458         
459         while (it != itend) {
460                 if (is_order_function(it->rest)) {
461                         if (!no_order)
462                                 e += Order(power(var - point, it->coeff));
463                 } else
464                         e += it->rest * power(var - point, it->coeff);
465                 ++it;
466         }
467         return e;
468 }
469
470 bool pseries::is_terminating(void) const
471 {
472         return seq.empty() || !is_order_function((seq.end()-1)->rest);
473 }
474
475
476 /*
477  *  Implementations of series expansion
478  */
479
480 /** Default implementation of ex::series(). This performs Taylor expansion.
481  *  @see ex::series */
482 ex basic::series(const relational & r, int order, unsigned options) const
483 {
484         epvector seq;
485         numeric fac = 1;
486         ex deriv = *this;
487         ex coeff = deriv.subs(r);
488         const symbol &s = ex_to<symbol>(r.lhs());
489         
490         if (!coeff.is_zero())
491                 seq.push_back(expair(coeff, _ex0));
492         
493         int n;
494         for (n=1; n<order; ++n) {
495                 fac = fac.mul(n);
496                 // We need to test for zero in order to see if the series terminates.
497                 // The problem is that there is no such thing as a perfect test for
498                 // zero.  Expanding the term occasionally helps a little...
499                 deriv = deriv.diff(s).expand();
500                 if (deriv.is_zero())  // Series terminates
501                         return pseries(r, seq);
502
503                 coeff = deriv.subs(r);
504                 if (!coeff.is_zero())
505                         seq.push_back(expair(fac.inverse() * coeff, n));
506         }
507         
508         // Higher-order terms, if present
509         deriv = deriv.diff(s);
510         if (!deriv.expand().is_zero())
511                 seq.push_back(expair(Order(_ex1), n));
512         return pseries(r, seq);
513 }
514
515
516 /** Implementation of ex::series() for symbols.
517  *  @see ex::series */
518 ex symbol::series(const relational & r, int order, unsigned options) const
519 {
520         epvector seq;
521         const ex point = r.rhs();
522         GINAC_ASSERT(is_exactly_a<symbol>(r.lhs()));
523
524         if (this->is_equal_same_type(ex_to<symbol>(r.lhs()))) {
525                 if (order > 0 && !point.is_zero())
526                         seq.push_back(expair(point, _ex0));
527                 if (order > 1)
528                         seq.push_back(expair(_ex1, _ex1));
529                 else
530                         seq.push_back(expair(Order(_ex1), numeric(order)));
531         } else
532                 seq.push_back(expair(*this, _ex0));
533         return pseries(r, seq);
534 }
535
536
537 /** Add one series object to another, producing a pseries object that
538  *  represents the sum.
539  *
540  *  @param other  pseries object to add with
541  *  @return the sum as a pseries */
542 ex pseries::add_series(const pseries &other) const
543 {
544         // Adding two series with different variables or expansion points
545         // results in an empty (constant) series 
546         if (!is_compatible_to(other)) {
547                 epvector nul;
548                 nul.push_back(expair(Order(_ex1), _ex0));
549                 return pseries(relational(var,point), nul);
550         }
551         
552         // Series addition
553         epvector new_seq;
554         epvector::const_iterator a = seq.begin();
555         epvector::const_iterator b = other.seq.begin();
556         epvector::const_iterator a_end = seq.end();
557         epvector::const_iterator b_end = other.seq.end();
558         int pow_a = INT_MAX, pow_b = INT_MAX;
559         for (;;) {
560                 // If a is empty, fill up with elements from b and stop
561                 if (a == a_end) {
562                         while (b != b_end) {
563                                 new_seq.push_back(*b);
564                                 ++b;
565                         }
566                         break;
567                 } else
568                         pow_a = ex_to<numeric>((*a).coeff).to_int();
569                 
570                 // If b is empty, fill up with elements from a and stop
571                 if (b == b_end) {
572                         while (a != a_end) {
573                                 new_seq.push_back(*a);
574                                 ++a;
575                         }
576                         break;
577                 } else
578                         pow_b = ex_to<numeric>((*b).coeff).to_int();
579                 
580                 // a and b are non-empty, compare powers
581                 if (pow_a < pow_b) {
582                         // a has lesser power, get coefficient from a
583                         new_seq.push_back(*a);
584                         if (is_order_function((*a).rest))
585                                 break;
586                         ++a;
587                 } else if (pow_b < pow_a) {
588                         // b has lesser power, get coefficient from b
589                         new_seq.push_back(*b);
590                         if (is_order_function((*b).rest))
591                                 break;
592                         ++b;
593                 } else {
594                         // Add coefficient of a and b
595                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
596                                 new_seq.push_back(expair(Order(_ex1), (*a).coeff));
597                                 break;  // Order term ends the sequence
598                         } else {
599                                 ex sum = (*a).rest + (*b).rest;
600                                 if (!(sum.is_zero()))
601                                         new_seq.push_back(expair(sum, numeric(pow_a)));
602                                 ++a;
603                                 ++b;
604                         }
605                 }
606         }
607         return pseries(relational(var,point), new_seq);
608 }
609
610
611 /** Implementation of ex::series() for sums. This performs series addition when
612  *  adding pseries objects.
613  *  @see ex::series */
614 ex add::series(const relational & r, int order, unsigned options) const
615 {
616         ex acc; // Series accumulator
617         
618         // Get first term from overall_coeff
619         acc = overall_coeff.series(r, order, options);
620         
621         // Add remaining terms
622         epvector::const_iterator it = seq.begin();
623         epvector::const_iterator itend = seq.end();
624         for (; it!=itend; ++it) {
625                 ex op;
626                 if (is_ex_exactly_of_type(it->rest, pseries))
627                         op = it->rest;
628                 else
629                         op = it->rest.series(r, order, options);
630                 if (!it->coeff.is_equal(_ex1))
631                         op = ex_to<pseries>(op).mul_const(ex_to<numeric>(it->coeff));
632                 
633                 // Series addition
634                 acc = ex_to<pseries>(acc).add_series(ex_to<pseries>(op));
635         }
636         return acc;
637 }
638
639
640 /** Multiply a pseries object with a numeric constant, producing a pseries
641  *  object that represents the product.
642  *
643  *  @param other  constant to multiply with
644  *  @return the product as a pseries */
645 ex pseries::mul_const(const numeric &other) const
646 {
647         epvector new_seq;
648         new_seq.reserve(seq.size());
649         
650         epvector::const_iterator it = seq.begin(), itend = seq.end();
651         while (it != itend) {
652                 if (!is_order_function(it->rest))
653                         new_seq.push_back(expair(it->rest * other, it->coeff));
654                 else
655                         new_seq.push_back(*it);
656                 ++it;
657         }
658         return pseries(relational(var,point), new_seq);
659 }
660
661
662 /** Multiply one pseries object to another, producing a pseries object that
663  *  represents the product.
664  *
665  *  @param other  pseries object to multiply with
666  *  @return the product as a pseries */
667 ex pseries::mul_series(const pseries &other) const
668 {
669         // Multiplying two series with different variables or expansion points
670         // results in an empty (constant) series 
671         if (!is_compatible_to(other)) {
672                 epvector nul;
673                 nul.push_back(expair(Order(_ex1), _ex0));
674                 return pseries(relational(var,point), nul);
675         }
676         
677         // Series multiplication
678         epvector new_seq;
679         int a_max = degree(var);
680         int b_max = other.degree(var);
681         int a_min = ldegree(var);
682         int b_min = other.ldegree(var);
683         int cdeg_min = a_min + b_min;
684         int cdeg_max = a_max + b_max;
685         
686         int higher_order_a = INT_MAX;
687         int higher_order_b = INT_MAX;
688         if (is_order_function(coeff(var, a_max)))
689                 higher_order_a = a_max + b_min;
690         if (is_order_function(other.coeff(var, b_max)))
691                 higher_order_b = b_max + a_min;
692         int higher_order_c = std::min(higher_order_a, higher_order_b);
693         if (cdeg_max >= higher_order_c)
694                 cdeg_max = higher_order_c - 1;
695         
696         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
697                 ex co = _ex0;
698                 // c(i)=a(0)b(i)+...+a(i)b(0)
699                 for (int i=a_min; cdeg-i>=b_min; ++i) {
700                         ex a_coeff = coeff(var, i);
701                         ex b_coeff = other.coeff(var, cdeg-i);
702                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
703                                 co += a_coeff * b_coeff;
704                 }
705                 if (!co.is_zero())
706                         new_seq.push_back(expair(co, numeric(cdeg)));
707         }
708         if (higher_order_c < INT_MAX)
709                 new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c)));
710         return pseries(relational(var, point), new_seq);
711 }
712
713
714 /** Implementation of ex::series() for product. This performs series
715  *  multiplication when multiplying series.
716  *  @see ex::series */
717 ex mul::series(const relational & r, int order, unsigned options) const
718 {
719         pseries acc; // Series accumulator
720
721         // Multiply with remaining terms
722         const epvector::const_iterator itbeg = seq.begin();
723         const epvector::const_iterator itend = seq.end();
724         for (epvector::const_iterator it=itbeg; it!=itend; ++it) {
725                 ex op = recombine_pair_to_ex(*it).series(r, order, options);
726
727                 // Series multiplication
728                 if (it==itbeg)
729                         acc = ex_to<pseries>(op);
730                 else
731                         acc = ex_to<pseries>(acc.mul_series(ex_to<pseries>(op)));
732         }
733         return acc.mul_const(ex_to<numeric>(overall_coeff));
734 }
735
736
737 /** Compute the p-th power of a series.
738  *
739  *  @param p  power to compute
740  *  @param deg  truncation order of series calculation */
741 ex pseries::power_const(const numeric &p, int deg) const
742 {
743         // method:
744         // (due to Leonhard Euler)
745         // let A(x) be this series and for the time being let it start with a
746         // constant (later we'll generalize):
747         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
748         // We want to compute
749         //     C(x) = A(x)^p
750         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
751         // Taking the derivative on both sides and multiplying with A(x) one
752         // immediately arrives at
753         //     C'(x)*A(x) = p*C(x)*A'(x)
754         // Multiplying this out and comparing coefficients we get the recurrence
755         // formula
756         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
757         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
758         // which can easily be solved given the starting value c_0 = (a_0)^p.
759         // For the more general case where the leading coefficient of A(x) is not
760         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
761         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
762         // then of course x^(p*m) but the recurrence formula still holds.
763         
764         if (seq.empty()) {
765                 // as a special case, handle the empty (zero) series honoring the
766                 // usual power laws such as implemented in power::eval()
767                 if (p.real().is_zero())
768                         throw std::domain_error("pseries::power_const(): pow(0,I) is undefined");
769                 else if (p.real().is_negative())
770                         throw pole_error("pseries::power_const(): division by zero",1);
771                 else
772                         return *this;
773         }
774         
775         const int ldeg = ldegree(var);
776         if (!(p*ldeg).is_integer())
777                 throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series");
778
779         // O(x^n)^(-m) is undefined
780         if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative())
781                 throw pole_error("pseries::power_const(): division by zero",1);
782         
783         // Compute coefficients of the powered series
784         exvector co;
785         co.reserve(deg);
786         co.push_back(power(coeff(var, ldeg), p));
787         bool all_sums_zero = true;
788         for (int i=1; i<deg; ++i) {
789                 ex sum = _ex0;
790                 for (int j=1; j<=i; ++j) {
791                         ex c = coeff(var, j + ldeg);
792                         if (is_order_function(c)) {
793                                 co.push_back(Order(_ex1));
794                                 break;
795                         } else
796                                 sum += (p * j - (i - j)) * co[i - j] * c;
797                 }
798                 if (!sum.is_zero())
799                         all_sums_zero = false;
800                 co.push_back(sum / coeff(var, ldeg) / i);
801         }
802         
803         // Construct new series (of non-zero coefficients)
804         epvector new_seq;
805         bool higher_order = false;
806         for (int i=0; i<deg; ++i) {
807                 if (!co[i].is_zero())
808                         new_seq.push_back(expair(co[i], p * ldeg + i));
809                 if (is_order_function(co[i])) {
810                         higher_order = true;
811                         break;
812                 }
813         }
814         if (!higher_order && !all_sums_zero)
815                 new_seq.push_back(expair(Order(_ex1), p * ldeg + deg));
816         return pseries(relational(var,point), new_seq);
817 }
818
819
820 /** Return a new pseries object with the powers shifted by deg. */
821 pseries pseries::shift_exponents(int deg) const
822 {
823         epvector newseq = seq;
824         epvector::iterator i = newseq.begin(), end  = newseq.end();
825         while (i != end) {
826                 i->coeff += deg;
827                 ++i;
828         }
829         return pseries(relational(var, point), newseq);
830 }
831
832
833 /** Implementation of ex::series() for powers. This performs Laurent expansion
834  *  of reciprocals of series at singularities.
835  *  @see ex::series */
836 ex power::series(const relational & r, int order, unsigned options) const
837 {
838         // If basis is already a series, just power it
839         if (is_ex_exactly_of_type(basis, pseries))
840                 return ex_to<pseries>(basis).power_const(ex_to<numeric>(exponent), order);
841
842         // Basis is not a series, may there be a singularity?
843         bool must_expand_basis = false;
844         try {
845                 basis.subs(r);
846         } catch (pole_error) {
847                 must_expand_basis = true;
848         }
849                 
850         // Is the expression of type something^(-int)?
851         if (!must_expand_basis && !exponent.info(info_flags::negint))
852                 return basic::series(r, order, options);
853                 
854         // Is the expression of type 0^something?
855         if (!must_expand_basis && !basis.subs(r).is_zero())
856                 return basic::series(r, order, options);
857
858         // Singularity encountered, is the basis equal to (var - point)?
859         if (basis.is_equal(r.lhs() - r.rhs())) {
860                 epvector new_seq;
861                 if (ex_to<numeric>(exponent).to_int() < order)
862                         new_seq.push_back(expair(_ex1, exponent));
863                 else
864                         new_seq.push_back(expair(Order(_ex1), exponent));
865                 return pseries(r, new_seq);
866         }
867
868         // No, expand basis into series
869         ex e = basis.series(r, order, options);
870         return ex_to<pseries>(e).power_const(ex_to<numeric>(exponent), order);
871 }
872
873
874 /** Re-expansion of a pseries object. */
875 ex pseries::series(const relational & r, int order, unsigned options) const
876 {
877         const ex p = r.rhs();
878         GINAC_ASSERT(is_exactly_a<symbol>(r.lhs()));
879         const symbol &s = ex_to<symbol>(r.lhs());
880         
881         if (var.is_equal(s) && point.is_equal(p)) {
882                 if (order > degree(s))
883                         return *this;
884                 else {
885                         epvector new_seq;
886                         epvector::const_iterator it = seq.begin(), itend = seq.end();
887                         while (it != itend) {
888                                 int o = ex_to<numeric>(it->coeff).to_int();
889                                 if (o >= order) {
890                                         new_seq.push_back(expair(Order(_ex1), o));
891                                         break;
892                                 }
893                                 new_seq.push_back(*it);
894                                 ++it;
895                         }
896                         return pseries(r, new_seq);
897                 }
898         } else
899                 return convert_to_poly().series(r, order, options);
900 }
901
902
903 /** Compute the truncated series expansion of an expression.
904  *  This function returns an expression containing an object of class pseries 
905  *  to represent the series. If the series does not terminate within the given
906  *  truncation order, the last term of the series will be an order term.
907  *
908  *  @param r  expansion relation, lhs holds variable and rhs holds point
909  *  @param order  truncation order of series calculations
910  *  @param options  of class series_options
911  *  @return an expression holding a pseries object */
912 ex ex::series(const ex & r, int order, unsigned options) const
913 {
914         GINAC_ASSERT(bp!=0);
915         ex e;
916         relational rel_;
917         
918         if (is_ex_exactly_of_type(r,relational))
919                 rel_ = ex_to<relational>(r);
920         else if (is_ex_exactly_of_type(r,symbol))
921                 rel_ = relational(r,_ex0);
922         else
923                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
924         
925         try {
926                 e = bp->series(rel_, order, options);
927         } catch (std::exception &x) {
928                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
929         }
930         return e;
931 }
932
933 } // namespace GiNaC