]> www.ginac.de Git - ginac.git/blob - ginac/pseries.cpp
Fix two leaks in class pseries, where zero terms could have been created.
[ginac.git] / ginac / pseries.cpp
1 /** @file pseries.cpp
2  *
3  *  Implementation of class for extended truncated power series and
4  *  methods for series expansion. */
5
6 /*
7  *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23
24 #include <stdexcept>
25
26 #include "pseries.h"
27 #include "add.h"
28 #include "inifcns.h"
29 #include "lst.h"
30 #include "mul.h"
31 #include "power.h"
32 #include "relational.h"
33 #include "symbol.h"
34 #include "archive.h"
35 #include "utils.h"
36 #include "debugmsg.h"
37
38 #ifndef NO_NAMESPACE_GINAC
39 namespace GiNaC {
40 #endif // ndef NO_NAMESPACE_GINAC
41
42 GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic)
43
44 /*
45  *  Default constructor, destructor, copy constructor, assignment operator and helpers
46  */
47
48 pseries::pseries() : basic(TINFO_pseries)
49 {
50         debugmsg("pseries default constructor", LOGLEVEL_CONSTRUCT);
51 }
52
53 void pseries::copy(const pseries &other)
54 {
55         inherited::copy(other);
56         seq = other.seq;
57         var = other.var;
58         point = other.point;
59 }
60
61 void pseries::destroy(bool call_parent)
62 {
63         if (call_parent)
64                 inherited::destroy(call_parent);
65 }
66
67
68 /*
69  *  Other constructors
70  */
71
72 /** Construct pseries from a vector of coefficients and powers.
73  *  expair.rest holds the coefficient, expair.coeff holds the power.
74  *  The powers must be integers (positive or negative) and in ascending order;
75  *  the last coefficient can be Order(_ex1()) to represent a truncated,
76  *  non-terminating series.
77  *
78  *  @param rel_  expansion variable and point (must hold a relational)
79  *  @param ops_  vector of {coefficient, power} pairs (coefficient must not be zero)
80  *  @return newly constructed pseries */
81 pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_)
82 {
83         debugmsg("pseries constructor from ex,epvector", LOGLEVEL_CONSTRUCT);
84         GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational));
85         GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol));
86         point = rel_.rhs();
87         var = *static_cast<symbol *>(rel_.lhs().bp);
88 }
89
90
91 /*
92  *  Archiving
93  */
94
95 /** Construct object from archive_node. */
96 pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
97 {
98         debugmsg("pseries constructor from archive_node", LOGLEVEL_CONSTRUCT);
99         for (unsigned int i=0; true; ++i) {
100                 ex rest;
101                 ex coeff;
102                 if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i))
103                         seq.push_back(expair(rest, coeff));
104                 else
105                         break;
106         }
107         n.find_ex("var", var, sym_lst);
108         n.find_ex("point", point, sym_lst);
109 }
110
111 /** Unarchive the object. */
112 ex pseries::unarchive(const archive_node &n, const lst &sym_lst)
113 {
114         return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated);
115 }
116
117 /** Archive the object. */
118 void pseries::archive(archive_node &n) const
119 {
120         inherited::archive(n);
121         epvector::const_iterator i = seq.begin(), iend = seq.end();
122         while (i != iend) {
123                 n.add_ex("coeff", i->rest);
124                 n.add_ex("power", i->coeff);
125                 ++i;
126         }
127         n.add_ex("var", var);
128         n.add_ex("point", point);
129 }
130
131 //////////
132 // functions overriding virtual functions from bases classes
133 //////////
134
135 void pseries::print(std::ostream &os, unsigned upper_precedence) const
136 {
137         debugmsg("pseries print", LOGLEVEL_PRINT);
138         if (precedence<=upper_precedence) os << "(";
139         // objects of type pseries must not have any zero entries, so the
140         // trivial (zero) pseries needs a special treatment here:
141         if (seq.size()==0)
142                 os << '0';
143         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
144                 // print a sign, if needed
145                 if (i!=seq.begin())
146                         os << '+';
147                 if (!is_order_function(i->rest)) {
148                         // print 'rest', i.e. the expansion coefficient
149                         if (i->rest.info(info_flags::numeric) &&
150                                 i->rest.info(info_flags::positive)) {
151                                 os << i->rest;
152                         } else
153                                 os << "(" << i->rest << ')';
154                         // print 'coeff', something like (x-1)^42
155                         if (!i->coeff.is_zero()) {
156                                 os << '*';
157                                 if (!point.is_zero())
158                                         os << '(' << var-point << ')';
159                                 else
160                                         os << var;
161                                 if (i->coeff.compare(_ex1())) {
162                                         os << '^';
163                                         if (i->coeff.info(info_flags::negative))
164                                                 os << '(' << i->coeff << ')';
165                                         else
166                                                 os << i->coeff;
167                                 }
168                         }
169                 } else {
170                         os << Order(power(var-point,i->coeff));
171                 }
172         }
173         if (precedence<=upper_precedence) os << ")";
174 }
175
176
177 void pseries::printraw(std::ostream &os) const
178 {
179         debugmsg("pseries printraw", LOGLEVEL_PRINT);
180         os << "pseries(" << var << ";" << point << ";";
181         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i)
182                 os << "(" << (*i).rest << "," << (*i).coeff << "),";
183         os << ")";
184 }
185
186
187 void pseries::printtree(std::ostream & os, unsigned indent) const
188 {
189         debugmsg("pseries printtree",LOGLEVEL_PRINT);
190         os << std::string(indent,' ') << "pseries " 
191            << ", hash=" << hashvalue
192            << " (0x" << std::hex << hashvalue << std::dec << ")"
193            << ", flags=" << flags << std::endl;
194         for (unsigned i=0; i<seq.size(); ++i) {
195                 seq[i].rest.printtree(os,indent+delta_indent);
196                 seq[i].coeff.printtree(os,indent+delta_indent);
197                 if (i!=seq.size()-1)
198                         os << std::string(indent+delta_indent,' ') << "-----" << std::endl;
199         }
200         var.printtree(os, indent+delta_indent);
201         point.printtree(os, indent+delta_indent);
202 }
203
204 int pseries::compare_same_type(const basic & other) const
205 {
206         GINAC_ASSERT(is_of_type(other, pseries));
207         const pseries &o = static_cast<const pseries &>(other);
208
209         int cmpval = var.compare(o.var);
210         if (cmpval)
211                 return cmpval;
212         cmpval = point.compare(o.point);
213         if (cmpval)
214                 return cmpval;
215
216         epvector::const_iterator it1 = seq.begin(), it2 = o.seq.begin(), it1end = seq.end(), it2end = o.seq.end();
217         while ((it1 != it1end) && (it2 != it2end)) {
218                 cmpval = it1->compare(*it2);
219                 if (cmpval)
220                         return cmpval;
221                 it1++; it2++;
222         }
223         if (it1 == it1end)
224                 return it2 == it2end ? 0 : -1;
225
226         return 0;
227 }
228
229 /** Return the number of operands including a possible order term. */
230 unsigned pseries::nops(void) const
231 {
232         return seq.size();
233 }
234
235
236 /** Return the ith term in the series when represented as a sum. */
237 ex pseries::op(int i) const
238 {
239         if (i < 0 || unsigned(i) >= seq.size())
240                 throw (std::out_of_range("op() out of range"));
241         return seq[i].rest * power(var - point, seq[i].coeff);
242 }
243
244
245 ex &pseries::let_op(int i)
246 {
247         throw (std::logic_error("let_op not defined for pseries"));
248 }
249
250
251 /** Return degree of highest power of the series.  This is usually the exponent
252  *  of the Order term.  If s is not the expansion variable of the series, the
253  *  series is examined termwise. */
254 int pseries::degree(const symbol &s) const
255 {
256         if (var.is_equal(s)) {
257                 // Return last exponent
258                 if (seq.size())
259                         return ex_to_numeric((*(seq.end() - 1)).coeff).to_int();
260                 else
261                         return 0;
262         } else {
263                 epvector::const_iterator it = seq.begin(), itend = seq.end();
264                 if (it == itend)
265                         return 0;
266                 int max_pow = INT_MIN;
267                 while (it != itend) {
268                         int pow = it->rest.degree(s);
269                         if (pow > max_pow)
270                                 max_pow = pow;
271                         ++it;
272                 }
273                 return max_pow;
274         }
275 }
276
277 /** Return degree of lowest power of the series.  This is usually the exponent
278  *  of the leading term.  If s is not the expansion variable of the series, the
279  *  series is examined termwise.  If s is the expansion variable but the
280  *  expansion point is not zero the series is not expanded to find the degree.
281  *  I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */
282 int pseries::ldegree(const symbol &s) const
283 {
284         if (var.is_equal(s)) {
285                 // Return first exponent
286                 if (seq.size())
287                         return ex_to_numeric((*(seq.begin())).coeff).to_int();
288                 else
289                         return 0;
290         } else {
291                 epvector::const_iterator it = seq.begin(), itend = seq.end();
292                 if (it == itend)
293                         return 0;
294                 int min_pow = INT_MAX;
295                 while (it != itend) {
296                         int pow = it->rest.ldegree(s);
297                         if (pow < min_pow)
298                                 min_pow = pow;
299                         ++it;
300                 }
301                 return min_pow;
302         }
303 }
304
305 /** Return coefficient of degree n in power series if s is the expansion
306  *  variable.  If the expansion point is nonzero, by definition the n=1
307  *  coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming
308  *  the expansion took place in the s in the first place).
309  *  If s is not the expansion variable, an attempt is made to convert the
310  *  series to a polynomial and return the corresponding coefficient from
311  *  there. */
312 ex pseries::coeff(const symbol &s, int n) const
313 {
314         if (var.is_equal(s)) {
315                 if (seq.size() == 0)
316                         return _ex0();
317                 
318                 // Binary search in sequence for given power
319                 numeric looking_for = numeric(n);
320                 int lo = 0, hi = seq.size() - 1;
321                 while (lo <= hi) {
322                         int mid = (lo + hi) / 2;
323                         GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric));
324                         int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for);
325                         switch (cmp) {
326                                 case -1:
327                                         lo = mid + 1;
328                                         break;
329                                 case 0:
330                                         return seq[mid].rest;
331                                 case 1:
332                                         hi = mid - 1;
333                                         break;
334                                 default:
335                                         throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1"));
336                         }
337                 }
338                 return _ex0();
339         } else
340                 return convert_to_poly().coeff(s, n);
341 }
342
343 /** Does nothing. */
344 ex pseries::collect(const symbol &s) const
345 {
346         return *this;
347 }
348
349
350 /** Evaluate coefficients. */
351 ex pseries::eval(int level) const
352 {
353         if (level == 1)
354                 return this->hold();
355         
356         if (level == -max_recursion_level)
357                 throw (std::runtime_error("pseries::eval(): recursion limit exceeded"));
358         
359         // Construct a new series with evaluated coefficients
360         epvector new_seq;
361         new_seq.reserve(seq.size());
362         epvector::const_iterator it = seq.begin(), itend = seq.end();
363         while (it != itend) {
364                 new_seq.push_back(expair(it->rest.eval(level-1), it->coeff));
365                 ++it;
366         }
367         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
368 }
369
370
371 /** Evaluate coefficients numerically. */
372 ex pseries::evalf(int level) const
373 {
374         if (level == 1)
375                 return *this;
376         
377         if (level == -max_recursion_level)
378                 throw (std::runtime_error("pseries::evalf(): recursion limit exceeded"));
379         
380         // Construct a new series with evaluated coefficients
381         epvector new_seq;
382         new_seq.reserve(seq.size());
383         epvector::const_iterator it = seq.begin(), itend = seq.end();
384         while (it != itend) {
385                 new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff));
386                 ++it;
387         }
388         return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated);
389 }
390
391
392 ex pseries::subs(const lst & ls, const lst & lr) const
393 {
394         // If expansion variable is being substituted, convert the series to a
395         // polynomial and do the substitution there because the result might
396         // no longer be a power series
397         if (ls.has(var))
398                 return convert_to_poly(true).subs(ls, lr);
399         
400         // Otherwise construct a new series with substituted coefficients and
401         // expansion point
402         epvector newseq;
403         newseq.reserve(seq.size());
404         epvector::const_iterator it = seq.begin(), itend = seq.end();
405         while (it != itend) {
406                 newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff));
407                 ++it;
408         }
409         return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated);
410 }
411
412
413 /** Implementation of ex::expand() for a power series.  It expands all the
414  *  terms individually and returns the resulting series as a new pseries.
415  *  @see ex::diff */
416 ex pseries::expand(unsigned options) const
417 {
418         epvector newseq;
419         for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) {
420                 ex restexp = i->rest.expand();
421                 if (!restexp.is_zero())
422                         newseq.push_back(expair(restexp, i->coeff));
423         }
424         return (new pseries(relational(var,point), newseq))
425                 ->setflag(status_flags::dynallocated | status_flags::expanded);
426 }
427
428
429 /** Implementation of ex::diff() for a power series.  It treats the series as a
430  *  polynomial.
431  *  @see ex::diff */
432 ex pseries::derivative(const symbol & s) const
433 {
434         if (s == var) {
435                 epvector new_seq;
436                 epvector::const_iterator it = seq.begin(), itend = seq.end();
437                 
438                 // FIXME: coeff might depend on var
439                 while (it != itend) {
440                         if (is_order_function(it->rest)) {
441                                 new_seq.push_back(expair(it->rest, it->coeff - 1));
442                         } else {
443                                 ex c = it->rest * it->coeff;
444                                 if (!c.is_zero())
445                                         new_seq.push_back(expair(c, it->coeff - 1));
446                         }
447                         ++it;
448                 }
449                 return pseries(relational(var,point), new_seq);
450         } else {
451                 return *this;
452         }
453 }
454
455
456 /*
457  *  Construct ordinary polynomial out of series
458  */
459
460 /** Convert a pseries object to an ordinary polynomial.
461  *
462  *  @param no_order flag: discard higher order terms */
463 ex pseries::convert_to_poly(bool no_order) const
464 {
465         ex e;
466         epvector::const_iterator it = seq.begin(), itend = seq.end();
467         
468         while (it != itend) {
469                 if (is_order_function(it->rest)) {
470                         if (!no_order)
471                                 e += Order(power(var - point, it->coeff));
472                 } else
473                         e += it->rest * power(var - point, it->coeff);
474                 ++it;
475         }
476         return e;
477 }
478
479 /** Returns true if there is no order term, i.e. the series terminates and
480  *  false otherwise. */
481 bool pseries::is_terminating(void) const
482 {
483         return seq.size() == 0 || !is_order_function((seq.end()-1)->rest);
484 }
485
486
487 /*
488  *  Implementation of series expansion
489  */
490
491 /** Default implementation of ex::series(). This performs Taylor expansion.
492  *  @see ex::series */
493 ex basic::series(const relational & r, int order, unsigned options) const
494 {
495         epvector seq;
496         numeric fac(1);
497         ex deriv = *this;
498         ex coeff = deriv.subs(r);
499         const symbol *s = static_cast<symbol *>(r.lhs().bp);
500         
501         if (!coeff.is_zero())
502                 seq.push_back(expair(coeff, numeric(0)));
503         
504         int n;
505         for (n=1; n<order; ++n) {
506                 fac = fac.mul(numeric(n));
507                 deriv = deriv.diff(*s).expand();
508                 if (deriv.is_zero()) {
509                         // Series terminates
510                         return pseries(r, seq);
511                 }
512                 coeff = deriv.subs(r);
513                 if (!coeff.is_zero())
514                         seq.push_back(expair(fac.inverse() * coeff, numeric(n)));
515         }
516         
517         // Higher-order terms, if present
518         deriv = deriv.diff(*s);
519         if (!deriv.expand().is_zero())
520                 seq.push_back(expair(Order(_ex1()), numeric(n)));
521         return pseries(r, seq);
522 }
523
524
525 /** Implementation of ex::series() for symbols.
526  *  @see ex::series */
527 ex symbol::series(const relational & r, int order, unsigned options) const
528 {
529         epvector seq;
530         const ex point = r.rhs();
531         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
532         const symbol *s = static_cast<symbol *>(r.lhs().bp);
533         
534         if (this->is_equal(*s)) {
535                 if (order > 0 && !point.is_zero())
536                         seq.push_back(expair(point, _ex0()));
537                 if (order > 1)
538                         seq.push_back(expair(_ex1(), _ex1()));
539                 else
540                         seq.push_back(expair(Order(_ex1()), numeric(order)));
541         } else
542                 seq.push_back(expair(*this, _ex0()));
543         return pseries(r, seq);
544 }
545
546
547 /** Add one series object to another, producing a pseries object that
548  *  represents the sum.
549  *
550  *  @param other  pseries object to add with
551  *  @return the sum as a pseries */
552 ex pseries::add_series(const pseries &other) const
553 {
554         // Adding two series with different variables or expansion points
555         // results in an empty (constant) series 
556         if (!is_compatible_to(other)) {
557                 epvector nul;
558                 nul.push_back(expair(Order(_ex1()), _ex0()));
559                 return pseries(relational(var,point), nul);
560         }
561         
562         // Series addition
563         epvector new_seq;
564         epvector::const_iterator a = seq.begin();
565         epvector::const_iterator b = other.seq.begin();
566         epvector::const_iterator a_end = seq.end();
567         epvector::const_iterator b_end = other.seq.end();
568         int pow_a = INT_MAX, pow_b = INT_MAX;
569         for (;;) {
570                 // If a is empty, fill up with elements from b and stop
571                 if (a == a_end) {
572                         while (b != b_end) {
573                                 new_seq.push_back(*b);
574                                 ++b;
575                         }
576                         break;
577                 } else
578                         pow_a = ex_to_numeric((*a).coeff).to_int();
579                 
580                 // If b is empty, fill up with elements from a and stop
581                 if (b == b_end) {
582                         while (a != a_end) {
583                                 new_seq.push_back(*a);
584                                 ++a;
585                         }
586                         break;
587                 } else
588                         pow_b = ex_to_numeric((*b).coeff).to_int();
589                 
590                 // a and b are non-empty, compare powers
591                 if (pow_a < pow_b) {
592                         // a has lesser power, get coefficient from a
593                         new_seq.push_back(*a);
594                         if (is_order_function((*a).rest))
595                                 break;
596                         ++a;
597                 } else if (pow_b < pow_a) {
598                         // b has lesser power, get coefficient from b
599                         new_seq.push_back(*b);
600                         if (is_order_function((*b).rest))
601                                 break;
602                         ++b;
603                 } else {
604                         // Add coefficient of a and b
605                         if (is_order_function((*a).rest) || is_order_function((*b).rest)) {
606                                 new_seq.push_back(expair(Order(_ex1()), (*a).coeff));
607                                 break;  // Order term ends the sequence
608                         } else {
609                                 ex sum = (*a).rest + (*b).rest;
610                                 if (!(sum.is_zero()))
611                                         new_seq.push_back(expair(sum, numeric(pow_a)));
612                                 ++a;
613                                 ++b;
614                         }
615                 }
616         }
617         return pseries(relational(var,point), new_seq);
618 }
619
620
621 /** Implementation of ex::series() for sums. This performs series addition when
622  *  adding pseries objects.
623  *  @see ex::series */
624 ex add::series(const relational & r, int order, unsigned options) const
625 {
626         ex acc; // Series accumulator
627         
628         // Get first term from overall_coeff
629         acc = overall_coeff.series(r, order, options);
630         
631         // Add remaining terms
632         epvector::const_iterator it = seq.begin();
633         epvector::const_iterator itend = seq.end();
634         for (; it!=itend; ++it) {
635                 ex op;
636                 if (is_ex_exactly_of_type(it->rest, pseries))
637                         op = it->rest;
638                 else
639                         op = it->rest.series(r, order, options);
640                 if (!it->coeff.is_equal(_ex1()))
641                         op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff));
642                 
643                 // Series addition
644                 acc = ex_to_pseries(acc).add_series(ex_to_pseries(op));
645         }
646         return acc;
647 }
648
649
650 /** Multiply a pseries object with a numeric constant, producing a pseries
651  *  object that represents the product.
652  *
653  *  @param other  constant to multiply with
654  *  @return the product as a pseries */
655 ex pseries::mul_const(const numeric &other) const
656 {
657         epvector new_seq;
658         new_seq.reserve(seq.size());
659         
660         epvector::const_iterator it = seq.begin(), itend = seq.end();
661         while (it != itend) {
662                 if (!is_order_function(it->rest))
663                         new_seq.push_back(expair(it->rest * other, it->coeff));
664                 else
665                         new_seq.push_back(*it);
666                 ++it;
667         }
668         return pseries(relational(var,point), new_seq);
669 }
670
671
672 /** Multiply one pseries object to another, producing a pseries object that
673  *  represents the product.
674  *
675  *  @param other  pseries object to multiply with
676  *  @return the product as a pseries */
677 ex pseries::mul_series(const pseries &other) const
678 {
679         // Multiplying two series with different variables or expansion points
680         // results in an empty (constant) series 
681         if (!is_compatible_to(other)) {
682                 epvector nul;
683                 nul.push_back(expair(Order(_ex1()), _ex0()));
684                 return pseries(relational(var,point), nul);
685         }
686         
687         // Series multiplication
688         epvector new_seq;
689         
690         const symbol *s = static_cast<symbol *>(var.bp);
691         int a_max = degree(*s);
692         int b_max = other.degree(*s);
693         int a_min = ldegree(*s);
694         int b_min = other.ldegree(*s);
695         int cdeg_min = a_min + b_min;
696         int cdeg_max = a_max + b_max;
697         
698         int higher_order_a = INT_MAX;
699         int higher_order_b = INT_MAX;
700         if (is_order_function(coeff(*s, a_max)))
701                 higher_order_a = a_max + b_min;
702         if (is_order_function(other.coeff(*s, b_max)))
703                 higher_order_b = b_max + a_min;
704         int higher_order_c = std::min(higher_order_a, higher_order_b);
705         if (cdeg_max >= higher_order_c)
706                 cdeg_max = higher_order_c - 1;
707         
708         for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) {
709                 ex co = _ex0();
710                 // c(i)=a(0)b(i)+...+a(i)b(0)
711                 for (int i=a_min; cdeg-i>=b_min; ++i) {
712                         ex a_coeff = coeff(*s, i);
713                         ex b_coeff = other.coeff(*s, cdeg-i);
714                         if (!is_order_function(a_coeff) && !is_order_function(b_coeff))
715                                 co += a_coeff * b_coeff;
716                 }
717                 if (!co.is_zero())
718                         new_seq.push_back(expair(co, numeric(cdeg)));
719         }
720         if (higher_order_c < INT_MAX)
721                 new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c)));
722         return pseries(relational(var,point), new_seq);
723 }
724
725
726 /** Implementation of ex::series() for product. This performs series
727  *  multiplication when multiplying series.
728  *  @see ex::series */
729 ex mul::series(const relational & r, int order, unsigned options) const
730 {
731         ex acc; // Series accumulator
732         
733         // Get first term from overall_coeff
734         acc = overall_coeff.series(r, order, options);
735         
736         // Multiply with remaining terms
737         epvector::const_iterator it = seq.begin();
738         epvector::const_iterator itend = seq.end();
739         for (; it!=itend; ++it) {
740                 ex op = it->rest;
741                 if (op.info(info_flags::numeric)) {
742                         // series * const (special case, faster)
743                         ex f = power(op, it->coeff);
744                         acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f));
745                         continue;
746                 } else if (!is_ex_exactly_of_type(op, pseries))
747                         op = op.series(r, order, options);
748                 if (!it->coeff.is_equal(_ex1()))
749                         op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order);
750
751                 // Series multiplication
752                 acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op));
753         }
754         return acc;
755 }
756
757
758 /** Compute the p-th power of a series.
759  *
760  *  @param p  power to compute
761  *  @param deg  truncation order of series calculation */
762 ex pseries::power_const(const numeric &p, int deg) const
763 {
764         // method:
765         // let A(x) be this series and for the time being let it start with a
766         // constant (later we'll generalize):
767         //     A(x) = a_0 + a_1*x + a_2*x^2 + ...
768         // We want to compute
769         //     C(x) = A(x)^p
770         //     C(x) = c_0 + c_1*x + c_2*x^2 + ...
771         // Taking the derivative on both sides and multiplying with A(x) one
772         // immediately arrives at
773         //     C'(x)*A(x) = p*C(x)*A'(x)
774         // Multiplying this out and comparing coefficients we get the recurrence
775         // formula
776         //     c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ...
777         //                    ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i)
778         // which can easily be solved given the starting value c_0 = (a_0)^p.
779         // For the more general case where the leading coefficient of A(x) is not
780         // a constant, just consider A2(x) = A(x)*x^m, with some integer m and
781         // repeat the above derivation.  The leading power of C2(x) = A2(x)^2 is
782         // then of course x^(p*m) but the recurrence formula still holds.
783         const symbol *s = static_cast<symbol *>(var.bp);
784         int ldeg = ldegree(*s);
785         
786         // Compute coefficients of the powered series
787         exvector co;
788         co.reserve(deg);
789         co.push_back(power(coeff(*s, ldeg), p));
790         bool all_sums_zero = true;
791         for (int i=1; i<deg; ++i) {
792                 ex sum = _ex0();
793                 for (int j=1; j<=i; ++j) {
794                         ex c = coeff(*s, j + ldeg);
795                         if (is_order_function(c)) {
796                                 co.push_back(Order(_ex1()));
797                                 break;
798                         } else
799                                 sum += (p * j - (i - j)) * co[i - j] * c;
800                 }
801                 if (!sum.is_zero())
802                         all_sums_zero = false;
803                 co.push_back(sum / coeff(*s, ldeg) / numeric(i));
804         }
805         
806         // Construct new series (of non-zero coefficients)
807         epvector new_seq;
808         bool higher_order = false;
809         for (int i=0; i<deg; ++i) {
810                 if (!co[i].is_zero())
811                         new_seq.push_back(expair(co[i], numeric(i) + p * ldeg));
812                 if (is_order_function(co[i])) {
813                         higher_order = true;
814                         break;
815                 }
816         }
817         if (!higher_order && !all_sums_zero)
818                 new_seq.push_back(expair(Order(_ex1()), numeric(deg) + p * ldeg));
819         return pseries(relational(var,point), new_seq);
820 }
821
822
823 /** Return a new pseries object with the powers shifted by deg. */
824 pseries pseries::shift_exponents(int deg) const
825 {
826         epvector newseq(seq);
827         for (epvector::iterator i=newseq.begin(); i!=newseq.end(); ++i)
828                 i->coeff = i->coeff + deg;
829         return pseries(relational(var, point), newseq);
830 }
831
832
833 /** Implementation of ex::series() for powers. This performs Laurent expansion
834  *  of reciprocals of series at singularities.
835  *  @see ex::series */
836 ex power::series(const relational & r, int order, unsigned options) const
837 {
838         ex e;
839         if (!is_ex_exactly_of_type(basis, pseries)) {
840                 // Basis is not a series, may there be a singularity?
841                 bool must_expand_basis = false;
842                 try {
843                         basis.subs(r);
844                 } catch (pole_error) {
845                         must_expand_basis = true;
846                 }
847                 
848                 // Is the expression of type something^(-int)?
849                 if (!must_expand_basis && !exponent.info(info_flags::negint))
850                         return basic::series(r, order, options);
851                 
852                 // Is the expression of type 0^something?
853                 if (!must_expand_basis && !basis.subs(r).is_zero())
854                         return basic::series(r, order, options);
855                 
856                 // Singularity encountered, expand basis into series
857                 e = basis.series(r, order, options);
858         } else {
859                 // Basis is a series
860                 e = basis;
861         }
862         
863         // Power e
864         return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order);
865 }
866
867
868 /** Re-expansion of a pseries object. */
869 ex pseries::series(const relational & r, int order, unsigned options) const
870 {
871         const ex p = r.rhs();
872         GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
873         const symbol *s = static_cast<symbol *>(r.lhs().bp);
874         
875         if (var.is_equal(*s) && point.is_equal(p)) {
876                 if (order > degree(*s))
877                         return *this;
878                 else {
879                         epvector new_seq;
880                         epvector::const_iterator it = seq.begin(), itend = seq.end();
881                         while (it != itend) {
882                                 int o = ex_to_numeric(it->coeff).to_int();
883                                 if (o >= order) {
884                                         new_seq.push_back(expair(Order(_ex1()), o));
885                                         break;
886                                 }
887                                 new_seq.push_back(*it);
888                                 ++it;
889                         }
890                         return pseries(r, new_seq);
891                 }
892         } else
893                 return convert_to_poly().series(r, order, options);
894 }
895
896
897 /** Compute the truncated series expansion of an expression.
898  *  This function returns an expression containing an object of class pseries 
899  *  to represent the series. If the series does not terminate within the given
900  *  truncation order, the last term of the series will be an order term.
901  *
902  *  @param r  expansion relation, lhs holds variable and rhs holds point
903  *  @param order  truncation order of series calculations
904  *  @param options  of class series_options
905  *  @return an expression holding a pseries object */
906 ex ex::series(const ex & r, int order, unsigned options) const
907 {
908         GINAC_ASSERT(bp!=0);
909         ex e;
910         relational rel_;
911         
912         if (is_ex_exactly_of_type(r,relational))
913                 rel_ = ex_to_relational(r);
914         else if (is_ex_exactly_of_type(r,symbol))
915                 rel_ = relational(r,_ex0());
916         else
917                 throw (std::logic_error("ex::series(): expansion point has unknown type"));
918         
919         try {
920                 e = bp->series(rel_, order, options);
921         } catch (std::exception &x) {
922                 throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")"));
923         }
924         return e;
925 }
926
927 //////////
928 // static member variables
929 //////////
930
931 // protected
932
933 unsigned pseries::precedence = 38;  // for clarity just below add::precedence
934
935 #ifndef NO_NAMESPACE_GINAC
936 } // namespace GiNaC
937 #endif // ndef NO_NAMESPACE_GINAC